Accurate Measurement of Alpha Proton Chemical Shifts of Excited Protein States by Relaxation Dispersion NMR Spectroscopy

被引:56
作者
Lundstroem, Patrik [1 ]
Hansen, D. Flemming [1 ]
Vallurupalli, Pramodh [1 ]
Kay, Lewis E. [1 ]
机构
[1] Univ Toronto, Dept Mol Genet Biochem & Chem, Toronto, ON M5S 1A8, Canada
基金
加拿大健康研究院;
关键词
NUCLEAR-MAGNETIC-RESONANCE; SH3; DOMAIN; SECONDARY STRUCTURE; ADIABATIC PULSES; C-ALPHA; C-13; DYNAMICS; SEQUENCE; EXCHANGE; MOTIONS;
D O I
10.1021/ja807796a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carr-Purcell-Meiboom-Gill relaxation dispersion NMR spectroscopy can provide detailed information about low populated, invisible states of protein molecules, including backbone chemical shifts of the invisible conformer and bond vector orientations that can be used as structural constraints. Notably, the measurement of H-1(alpha) chemical shifts in excited protein states has not been possible to date because, in the absence of suitable labeling, the homonuclear proton scalar coupling network in side chains of proteins leads to a significant degradation in the performance of proton-based relaxation dispersion experiments. Here we have overcome this problem through a labeling scheme in which proteins are prepared with U-H-2 glucose and 50% D2O/50% H2O that results in deuteration levels of between 50-88% at the C-beta carbon. Effects from residual H-1(alpha)-H-1(beta) scalar couplings can be suppressed through a new NMR experiment that is presented here. The utility of the methodology is demonstrated on a ligand binding exchanging system and it is shown that H-1(alpha) chemical shifts extracted from dispersion profiles are, on average, accurate to 0.03 ppm, an order of magnitude better than they can be predicted from structure using a database approach. The ability to measure H-1(alpha) chemical shifts of invisible conformers is particularly important because such shifts are sensitive to both secondary and tertiary structure. Thus, the methodology presented is a valuable addition to a growing list of experiments for characterizing excited protein states that are difficult to study using the traditional techniques of structural biology.
引用
收藏
页码:1915 / 1926
页数:12
相关论文
共 71 条
[1]   Weak alignment offers new NMR opportunities to study protein structure and dynamics [J].
Bax, A .
PROTEIN SCIENCE, 2003, 12 (01) :1-16
[2]  
BLOCH F, 1946, PHYS REV, V70, P460, DOI 10.1103/PhysRev.70.460
[3]   The dynamic energy landscape of dihydrofolate reductase catalysis [J].
Boehr, David D. ;
McElheny, Dan ;
Dyson, H. Jane ;
Wright, Peter E. .
SCIENCE, 2006, 313 (5793) :1638-1642
[4]   EFFECTS OF DIFFUSION ON FREE PRECESSION IN NUCLEAR MAGNETIC RESONANCE EXPERIMENTS [J].
CARR, HY ;
PURCELL, EM .
PHYSICAL REVIEW, 1954, 94 (03) :630-638
[5]   GENERAL 2-SITE SOLUTION FOR CHEMICAL EXCHANGE PRODUCED DEPENDENCE OF T2 UPON CARR-PURCELL PULSE SEPARATION [J].
CARVER, JP ;
RICHARDS, RE .
JOURNAL OF MAGNETIC RESONANCE, 1972, 6 (01) :89-&
[6]   Protein structure determination from NMR chemical shifts [J].
Cavalli, Andrea ;
Salvatella, Xavier ;
Dobson, Christopher M. ;
Vendruscolo, Michele .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (23) :9615-9620
[7]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[8]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293
[9]   HOMOLOGY OF A YEAST ACTIN-BINDING PROTEIN TO SIGNAL TRANSDUCTION PROTEINS AND MYOSIN-I [J].
DRUBIN, DG ;
MULHOLLAND, J ;
ZHU, ZM ;
BOTSTEIN, D .
NATURE, 1990, 343 (6255) :288-290
[10]   Enzyme dynamics during catalysis [J].
Eisenmesser, EZ ;
Bosco, DA ;
Akke, M ;
Kern, D .
SCIENCE, 2002, 295 (5559) :1520-1523