Vibrational thermodynamic instability of recursive networks

被引:19
作者
Burioni, R
Cassi, D
Fontana, MP
Vulpiani, A
机构
[1] Univ Parma, Dipartimento Fis, I-43100 Parma, Italy
[2] Univ Parma, INFM, I-43100 Parma, Italy
[3] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[4] Univ Roma La Sapienza, INFM, UdR, I-00185 Rome, Italy
[5] Univ Roma La Sapienza, SMC, I-00185 Rome, Italy
来源
EUROPHYSICS LETTERS | 2002年 / 58卷 / 06期
关键词
D O I
10.1209/epl/i2002-00445-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this letter we study the thermodynamic stability problem for a generic geometrical structure by considering the harmonic vibrational dynamics of a network of masses and springs. We relate the stability properties of the network to the recurrence properties of random walks or, equivalently, to the vibrational spectral dimension (d) over bar. This is an extension of the Peierls theorem for the thermodynamic instability of low-dimensional crystalline structures, proving that stability is possible if and only if (D) over bar > 2.. We predict the existence of an instability critical length on structurally disordered materials. Our results are discussed on the specific case of a Sierpinki-gasket fractal, which is exactly solvable.
引用
收藏
页码:806 / 810
页数:5
相关论文
共 9 条
[1]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[2]   Is the geometry of nature fractal? [J].
Avnir, D ;
Biham, O ;
Lidar, D ;
Malcai, O .
SCIENCE, 1998, 279 (5347) :39-40
[3]  
AVNIR D, 1996, PHYS REV E, V56, P2817
[4]   Geometrical universality in vibrational dynamics [J].
Burioni, R ;
Cassi, D .
MODERN PHYSICS LETTERS B, 1997, 11 (25) :1095-1101
[5]   The type-problem on the average for random walks on graphs [J].
Burioni, R ;
Cassi, D ;
Vezzani, A .
EUROPEAN PHYSICAL JOURNAL B, 2000, 15 (04) :665-672
[6]   Universal properties of spectral dimension [J].
Burioni, R ;
Cassi, D .
PHYSICAL REVIEW LETTERS, 1996, 76 (07) :1091-1093
[7]   DYNAMICAL PROPERTIES OF FRACTAL NETWORKS - SCALING, NUMERICAL SIMULATIONS, AND PHYSICAL REALIZATIONS [J].
NAKAYAMA, T ;
YAKUBO, K ;
ORBACH, RL .
REVIEWS OF MODERN PHYSICS, 1994, 66 (02) :381-443
[8]   SPECTRUM OF HARMONIC EXCITATIONS ON FRACTALS [J].
RAMMAL, R .
JOURNAL DE PHYSIQUE, 1984, 45 (02) :191-206
[9]  
[No title captured]