Exact solution for two interacting electrons on artificial atoms and molecules in solids

被引:12
作者
Aharony, A [1 ]
Entin-Wohlman, O
Imry, Y
机构
[1] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
[2] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
关键词
D O I
10.1103/PhysRevB.61.5452
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a general scheme for finding the exact eigenstates of two electrons, with on-site repulsive potentials {U-i}, on I impurities in a macroscopic crystal. The model describes impurities in doped semiconductors and artificial ''molecules'' in quantum dots. For quantum dots, the energy cost for adding two electrons is bounded by the single-electron spectrum, and does not diverge when U-i-->infinity, implying limitations on the validity of the Coulomb blockade picture. Analytic applications for I=1,2 on a one-dimensional chain yield quantum delocalization and magnetic transitions.
引用
收藏
页码:5452 / 5456
页数:5
相关论文
共 29 条
[1]  
AHARONY A, UNPUB
[2]  
Altshuler B. L., 1985, Electron-electron interactions in disordered systems, P1
[3]   LUTTINGER-LIQUID BEHAVIOR OF THE NORMAL METALLIC STATE OF THE 2D HUBBARD-MODEL [J].
ANDERSON, PW .
PHYSICAL REVIEW LETTERS, 1990, 64 (15) :1839-1841
[4]   LOCALIZED MAGNETIC STATES IN METALS [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1961, 124 (01) :41-&
[5]   Absence of bimodal peak spacing distribution in the coulomb blockade regime [J].
Berkovits, R .
PHYSICAL REVIEW LETTERS, 1998, 81 (10) :2128-2131
[6]   Formation of a coherent mode in a double quantum dot [J].
Blick, RH ;
Pfannkuche, D ;
Haug, RJ ;
von Klitzing, K ;
Eberl, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (18) :4032-4035
[7]   Hubbard model on d-dimensional hypercubes: Exact solution for the two-electron case [J].
Caffarel, M ;
Mosseri, R .
PHYSICAL REVIEW B, 1998, 57 (20) :R12651-R12654
[8]  
ECONOMOU EN, 1979, GREENS FUNCTIONS QUA, pR2
[9]   NEW COLLECTIVE MODE AND CORRECTIONS TO FERMI-LIQUID THEORY IN 2 DIMENSIONS [J].
ENGELBRECHT, JR ;
RANDERIA, M .
PHYSICAL REVIEW LETTERS, 1990, 65 (08) :1032-1035
[10]  
FINKELSTEIN AM, 1983, ZH EKSP TEOR FIZ, V57, P97