Bayesian analysis for reversible Markov chains

被引:41
作者
Diaconis, Persi [1 ]
Rolles, Silke W. W.
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
Bayesian analysis; reversible Markov chains; conjugate priors; hypothesis testing;
D O I
10.1214/009053606000000290
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a natural conjugate prior for the transition matrix of a reversible Markov chain. This allows estimation and testing. The prior arises from random walk with reinforcement in the same way the Dirichlet prior arises from Polya's urn. We give closed form normalizing constants, a simple method of simulation from the posterior and a characterization along the lines of W. E. Johnson's characterization of the Dirichlet prior.
引用
收藏
页码:1270 / 1292
页数:23
相关论文
共 19 条
[1]  
[Anonymous], 1978, STUDIES COMBINATORIC
[2]   On the volume of a certain polytope [J].
Chan, CS ;
Robbins, DP ;
Yuen, DS .
EXPERIMENTAL MATHEMATICS, 2000, 9 (01) :91-99
[3]  
DALAL SR, 1983, J ROY STAT SOC B MET, V45, P278
[4]   DE FINETTI THEOREM FOR MARKOV-CHAINS [J].
DIACONIS, P ;
FREEDMAN, D .
ANNALS OF PROBABILITY, 1980, 8 (01) :115-130
[5]  
Diaconis P., 1985, BAYESIAN STATISTICS, V2, P133
[6]  
Diaconis P., 1987, BAYESIAN STAT, V3, P111
[7]   On mixtures of distributions of Markov chains [J].
Fortini, S ;
Ladelli, L ;
Petris, G ;
Regazzini, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 100 :147-165
[8]   MIXTURES OF MARKOV-PROCESSES [J].
FREEDMAN, DA .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (01) :114-&
[9]  
GIBLIN PJ, 1981, GRAPHS SURFACES HOMO, DOI UNSP MR0643363
[10]   THE ROBUSTNESS AND SENSITIVITY OF THE MIXED-DIRICHLET BAYESIAN TEST FOR INDEPENDENCE IN CONTINGENCY-TABLES [J].
GOOD, IJ ;
CROOK, JF .
ANNALS OF STATISTICS, 1987, 15 (02) :670-693