Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana

被引:133
作者
Denby, KJ
Kumar, P
Kliebenstein, DJ
机构
[1] Univ Calif Davis, Dept Vegetable Crops, Davis, CA 95616 USA
[2] Univ Cape Town, Dept Mol & Cell Biol, ZA-7700 Rondebosch, South Africa
关键词
Botrytis; Arabidopsis; quantitative resistance; phytoalexin; camalexin; QTL;
D O I
10.1111/j.0960-7412.2004.02059.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Botrytis cinerea is a major pathogen of fruit and vegetable crops causing both pre- and post-harvest grey mould. We have analysed 16 Arabidopsis thaliana ecotypes for natural variation in B. cinerea susceptibility. Susceptibility was associated with lower camalexin accumulation, and three ecotypes (Cape Verdi Islands (Cvi-0), Slavice (Sav-0) and Kindalville (Kin-0)) showed differential susceptibility to the two B. cinerea isolates used. Subsequently, to better understand the genetic control of grey mould disease, we assayed the Arabidopsis Landsberg erecta (Ler) x Columbia (Col-0) recombinant inbred population with the two isolates, and identified multiple small-to-medium-effect quantitative trait loci (QTL) governing susceptibility. Interestingly, the QTL for each isolate are distinct, suggesting that different mechanisms govern defence against these two isolates. Two QTL for each isolate exhibited epistatic interactions with specific allele combinations generating heightened B. cinerea susceptibility.
引用
收藏
页码:473 / 486
页数:14
相关论文
共 50 条
[1]   Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis [J].
Alonso, JM ;
Stepanova, AN ;
Solano, R ;
Wisman, E ;
Ferrari, S ;
Ausubel, FM ;
Ecker, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) :2992-2997
[2]   Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population [J].
Alonso-Blanco, C ;
Peeters, AJM ;
Koornneef, M ;
Lister, C ;
Dean, C ;
van den Bosch, N ;
Pot, J ;
Kuiper, MTR .
PLANT JOURNAL, 1998, 14 (02) :259-271
[3]   Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2:: Role of salicylic acid, pyochelin, and pyocyanin [J].
Audenaert, K ;
Pattery, T ;
Cornelis, P ;
Höfte, M .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2002, 15 (11) :1147-1156
[4]  
Basten C.J., 1999, QTL Cartographer (Version 1.13)
[5]   Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea [J].
Benito, EP ;
ten Have, A ;
van't Klooster, JW ;
van Kan, JAL .
EUROPEAN JOURNAL OF PLANT PATHOLOGY, 1998, 104 (02) :207-220
[6]   Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi [J].
Berrocal-Lobo, M ;
Molina, A ;
Solano, R .
PLANT JOURNAL, 2002, 29 (01) :23-32
[7]   Plant pathogens and integrated defence responses to infection [J].
Dangl, JL ;
Jones, JDG .
NATURE, 2001, 411 (6839) :826-833
[8]   IDENTIFICATION AND MOLECULAR MAPPING OF A SINGLE ARABIDOPSIS-THALIANA LOCUS DETERMINING RESISTANCE TO A PHYTOPATHOGENIC PSEUDOMONAS-SYRINGAE ISOLATE [J].
DEBENER, T ;
LEHNACKERS, H ;
ARNOLD, M ;
DANGL, JL .
PLANT JOURNAL, 1991, 1 (03) :289-302
[9]   Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean [J].
DeMeyer, G ;
Hofte, M .
PHYTOPATHOLOGY, 1997, 87 (06) :588-593
[10]   Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum [J].
Deslandes, L ;
Pileur, F ;
Liaubet, L ;
Camut, S ;
Can, C ;
Williams, K ;
Holub, E ;
Beynon, J ;
Arlat, M ;
Marco, Y .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1998, 11 (07) :659-667