A two-domain structure of one subunit explains unique features of eukaryotic hydratase 2

被引:57
作者
Koski, MK
Haapalainen, AM
Hiltunen, JK
Glumoff, T
机构
[1] Univ Oulu, Dept Biochem, FIN-90014 Oulu, Finland
[2] Univ Oulu, Bioctr Oulu, FIN-90014 Oulu, Finland
关键词
D O I
10.1074/jbc.M400293200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
2-Enoyl-CoA hydratase 2, a part from multifunctional enzyme type 2, hydrates trans-2-enoyl-CoA to 3-hydroxyacyl-CoA in the (3R)-hydroxy-dependent route of peroxisomal beta-oxidation of fatty acids. Unliganded and (3R)-hydroxydecanoyl coenzyme A-complexed crystal structures of 2-enoyl-CoA hydratase 2 from Candida tropicalis multifunctional enzyme type 2 were solved to 1.95- and 2.35-Angstrom resolution, respectively. 2-Enoyl-CoA hydratase 2 is a dimeric, alpha+beta protein with a novel quaternary structure. The overall structure of the two-domain subunit of eukaryotic 2-enoyl-CoA hydratase 2 resembles the homodimeric, hot dog fold structures of prokaryotic (R)-specific 2-enoyl-CoA hydratase and beta-hydroxydecanoyl thiol ester dehydrase. Importantly, though, the eukaryotic hydratase 2 has a complete hot dog fold only in its C-domain, whereas the N-domain lacks a long central alpha-helix, thus creating space for bulkier substrates in the binding pocket and explaining the observed difference in substrate preference between eukaryotic and prokaryotic enzymes. Although the N- and C-domains have an identity of < 10% at the amino acid level, they share a 50% identity at the nucleotide level and fold similarly. We suggest that a subunit of 2-enoyl-CoA hydratase 2 has evolved via a gene duplication with the concomitant loss of one catalytic site. The hydrogen bonding network of the active site of 2-enoyl-CoA hydratase 2 resembles the active site geometry of mitochondrial (S)-specific 2-enoyl-CoA hydratase 1, although in a mirror image fashion. This arrangement allows the reaction to occur by similar mechanism, supported by mutagenesis and mechanistic studies, although via reciprocal stereochemistry.
引用
收藏
页码:24666 / 24672
页数:7
相关论文
共 37 条
[1]   Structural mechanism of enoyl-CoA hydratase: Three atoms from a single water are added in either an E1cb stepwise or concerted fashion [J].
Bahnson, BJ ;
Anderson, VE ;
Petsko, GA .
BIOCHEMISTRY, 2002, 41 (08) :2621-2629
[2]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[3]   Clear strategy screens for macromolecular crystallization [J].
Brzozowski, AM ;
Walton, J .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2001, 34 :97-101
[4]   Further characterization of the peroxisomal 3-hydroxyacyl-CoA dehydrogenases from rat liver - Relationship between the different dehydrogenases and evidence that fatty acids and the C-27 bile acids di- and tri-hydroxycoprostanic acids are metabolized by separate multifunctional proteins [J].
DieuaideNoubhani, M ;
Novikov, D ;
Baumgart, E ;
Vanhooren, JCT ;
Fransen, M ;
Goethals, M ;
Vandekerckhove, J ;
VanVeldhoven, PP ;
Mannaerts, GP .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 240 (03) :660-666
[5]   The diverse world of coenzyme A binding proteins [J].
Engel, C ;
Wierenga, R .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1996, 6 (06) :790-797
[6]   The crystal structure of enoyl-CoA hydratase complexed with octanoyl-CoA reveals the structural adaptations required for binding of a long chain fatty acid-CoA molecule [J].
Engel, CK ;
Kiema, TR ;
Hiltunen, JK ;
Wierenga, RK .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 275 (05) :847-859
[7]   Cloning and analysis of the Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae [J].
Fukui, T ;
Doi, Y .
JOURNAL OF BACTERIOLOGY, 1997, 179 (15) :4821-4830
[8]   A CONSERVED TRIPEPTIDE SORTS PROTEINS TO PEROXISOMES [J].
GOULD, SJ ;
KELLER, GA ;
HOSKEN, N ;
WILKINSON, J ;
SUBRAMANI, S .
JOURNAL OF CELL BIOLOGY, 1989, 108 (05) :1657-1664
[9]   SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling [J].
Guex, N ;
Peitsch, MC .
ELECTROPHORESIS, 1997, 18 (15) :2714-2723
[10]  
HILTUNEN JK, 1992, J BIOL CHEM, V267, P6646