The finite Heisenberg-Weyl groups in radar and communications

被引:93
作者
Howard, S. D.
Calderbank, A. R.
Moran, W.
机构
[1] Def Sci & Technol Org, Edinburgh 5111, Australia
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[3] Univ Melbourne, Dept Elect & Elect Engn, Melbourne Syst Lab, Melbourne, Vic 3010, Australia
关键词
D O I
10.1155/ASP/2006/85685
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate the theory of the finite Heisenberg-Weyl group in relation to the development of adaptive radar and to the construction of spreading sequences and error-correcting codes in communications. We contend that this group can form the basis for the representation of the radar environment in terms of operators on the space of waveforms. We also demonstrate, following recent developments in the theory of error-correcting codes, that the finite Heisenberg-Weyl groups provide a unified basis for the construction of useful waveforms/sequences for radar, communications, and the theory of error-correcting codes.
引用
收藏
页数:12
相关论文
共 38 条
[1]  
[Anonymous], 1983, THEORY ERROR CORRECT
[2]  
[Anonymous], 1993, Ten Lectures of Wavelets
[3]  
[Anonymous], 1951, THESIS MIT CAMBRIDGE
[4]  
[Anonymous], 1998, TIME FREQUENCY REPRE
[5]  
[Anonymous], RADAR SONAR 1
[6]   RADAR AMBIGUITY FUNCTIONS AND GROUP-THEORY [J].
AUSLANDER, L ;
TOLIMIERI, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (03) :577-601
[7]   SIGNATURE SEQUENCE SELECTION IN A CDMA SYSTEM WITH ORTHOGONAL CODING [J].
BOTTOMLEY, GE .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1993, 42 (01) :62-68
[8]   GENERALIZATIONS OF KERVAIRE INVARIANT [J].
BROWN, EH .
ANNALS OF MATHEMATICS, 1972, 95 (02) :368-+
[9]  
Budisin S. Z., 1985, IEEE T AERO ELEC SYS, V21, P170
[10]   NEW COMPLEMENTARY PAIRS OF SEQUENCES [J].
BUDISIN, SZ .
ELECTRONICS LETTERS, 1990, 26 (13) :881-883