Segmentation in vertebrates: clock and gradient finally joined

被引:156
作者
Aulehla, A [1 ]
Herrmann, BG [1 ]
机构
[1] Max Planck Inst Mol Genet, Dept Dev Genet, D-14195 Berlin, Germany
关键词
somitogenesis; segmentation clock; gradients in segmentation; Wnt signaling; Notch signaling; FGF signaling;
D O I
10.1101/gad.1217404
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The vertebral column is derived from somites formed by segmentation of presomitic mesoderm, a fundamental process of vertebrate embryogenesis. Models on the mechanism controlling this process date back some three to four decades. Access to understanding the molecular control of somitogenesis has been gained only recently by the discovery of molecular oscillators (segmentation clock) and gradients of signaling molecules, as predicted by early models. The Notch signaling pathway is linked to the oscillator and plays a decisive role in inter- and intrasomitic boundary formation. An Fgf8 signaling gradient is involved in somite size control. And the (canonical) Wnt signaling pathway, driven by Wnt3a, appears to integrate clock and gradient in a global mechanism controlling the segmentation process. In this review, we discuss recent advances in understanding the molecular mechanism controlling somitogenesis.
引用
收藏
页码:2060 / 2067
页数:8
相关论文
共 67 条
[1]  
Arias AM, 1998, INT J DEV BIOL, V42, P325
[2]   Wnt3A plays a major role in the segmentation clock controlling somitogenesis [J].
Aulehla, A ;
Wehrle, C ;
Brand-Saberi, B ;
Kemler, R ;
Gossler, A ;
Kanzler, B ;
Herrmann, BG .
DEVELOPMENTAL CELL, 2003, 4 (03) :395-406
[3]   Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation [J].
Aulehla, A ;
Johnson, RL .
DEVELOPMENTAL BIOLOGY, 1999, 207 (01) :49-61
[4]   Interaction between wingless and notch signaling pathways mediated by dishevelled [J].
Axelrod, JD ;
Matsuno, K ;
ArtavanisTsakonas, S ;
Perrimon, N .
SCIENCE, 1996, 271 (5257) :1826-1832
[5]   Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse [J].
Barrantes, ID ;
Elia, AJ ;
Wünsch, K ;
De Angelis, MH ;
Mak, TW ;
Rossant, J ;
Conlon, RA ;
Gossler, A ;
de la Pompa, JL .
CURRENT BIOLOGY, 1999, 9 (09) :470-480
[6]   Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β [J].
Behrens, J ;
Jerchow, BA ;
Würtele, M ;
Grimm, J ;
Asbrand, C ;
Wirtz, R ;
Kühl, M ;
Wedlich, D ;
Birchmeier, W .
SCIENCE, 1998, 280 (5363) :596-599
[7]   Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock [J].
Bessho, Y ;
Hirata, H ;
Masamizu, Y ;
Kageyama, R .
GENES & DEVELOPMENT, 2003, 17 (12) :1451-1456
[8]   Oscillations, clocks and segmentation [J].
Bessho, Y ;
Kageyama, R .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2003, 13 (04) :379-384
[9]   Hes7:: a bHLH-type repressor gene regulated by Notch and expressed in the presomitic mesoderm [J].
Bessho, Y ;
Miyoshi, G ;
Sakata, R ;
Kageyama, R .
GENES TO CELLS, 2001, 6 (02) :175-185
[10]  
CHRIST B, 1974, Verhandlungen der Anatomischen Gesellschaft, V68, P573