Data fusion and multisource image classification

被引:63
作者
Amarsaikhan, D
Douglas, T [1 ]
机构
[1] Northumbria Univ, Sch Appl Sci, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[2] Mongolian Acad Sci, Inst Informat & RS, Dept Geoinformat, Ulaanbaatar 51, Mongolia
关键词
D O I
10.1080/0143116031000115111
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The aim of this study is to explore different data fusion techniques and compare the performances of a standard supervised classification and expert classification. For the supervised classification, different feature extraction approaches are used. To increase the reliability of the classification, different threshold values are determined and fuzzy convolutions are applied. For the expert classification, a set of rules is determined and a hierarchical decision tree is created. Overall, the research indicates that multisource information can significantly improve the interpretation and classification of land cover types and the expert classification is a powerful tool in the production of a reliable land cover map.
引用
收藏
页码:3529 / 3539
页数:11
相关论文
共 20 条
[1]  
AMARSAIKHAN D, 2000, APPL SPECTRAL SCATTE
[2]  
AMARSAIKHAN D, 1997, COMPARISON DIFFERENT, P71
[3]  
AMARSAIKHAN D, 2001, P OP S CHANG SUST PA, P74
[4]  
AMARSAIKHAN D, 1999, P 20 AS C REM SENS H, P434
[5]  
[Anonymous], 1992, Data fusion in robotics and machine intelligence
[6]   Feature extraction for multisource data classification with artificial neural networks [J].
Benediktsson, JA ;
Sveinsson, JR .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (04) :727-740
[7]  
HARRIS JR, 1990, PHOTOGRAMM ENG REM S, V56, P1631
[8]   Land cover discrimination from multitemporal ERS images and multispectral Landsat images:: a study case in an agricultural area in France [J].
Le Hégarat-Mascle, S ;
Quesney, A ;
Vidal-Madjar, D ;
Taconet, O ;
Normand, M ;
Loumagne, C .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (03) :435-456
[9]  
Mather P. M., 1999, COMPUTER PROCESSING
[10]  
MUNECHIKA CK, 1993, PHOTOGRAMM ENG REM S, V59, P67