Autonomous agent response learning by a multi-species particle swarm optimization

被引:21
作者
Chow, CK [1 ]
Tsui, HT [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Elect Engn, Visual Signal Proc & Commun Lab, Sha Tin 100083, Peoples R China
来源
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2004年
关键词
D O I
10.1109/CEC.2004.1330938
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel autonomous agent response learning (AARL) algorithm is presented in this paper. We proposed to decompose the award function into a set of local award functions. By optimizing this objective function set, the response function with maximum award can be determined. To tackle the optimization problem, a modified Particle Swarm Optimization (PSO) called "Multi-Species PSO (MS-PSO)" is introduced by considering each objective function as a specie swarm. Two sets of experiments are provided to illustrate the performance of MS-PSO. The results show that it returns a more accurate response set within shorter duration by comparing with other PSO methods.
引用
收藏
页码:778 / 785
页数:8
相关论文
共 15 条
[1]  
ATKESON CG, 1991, 1991 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-3, P958, DOI 10.1109/ROBOT.1991.131713
[2]  
Bentivegna DC, 2001, IEEE INT CONF ROBOT, P1988, DOI 10.1109/ROBOT.2001.932899
[3]  
Coello CAC, 2002, IEEE C EVOL COMPUTAT, P1051, DOI 10.1109/CEC.2002.1004388
[4]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[5]  
ENOKIDA S, 1999, P IEEE INT C SYST MA, V2, P752
[6]  
Goldberg D.E., 1989, OPTIMIZATION MACHINE
[7]  
Gross HM, 1998, IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, P1992, DOI 10.1109/IJCNN.1998.687165
[8]  
HOWELL MN, 2000, IEE SEM 26 MAY
[9]  
Hu XH, 2002, IEEE C EVOL COMPUTAT, P1677, DOI 10.1109/CEC.2002.1004494
[10]  
KAELBLING LP, 1996, P 1996 IEEE RSJ INT, V3, P1319