Antigen stimulation of mast cells via the IgE receptor, Fc epsilon RI, results in the recruitment of the cytosolic tyrosine kinase, Syk, and the activation of various signaling cascades. One of these, the extracellular signal-regulated kinase (ERK2) cascade, is inhibited by low concentrations of the immunosuppressant drug, dexamethasone, probably at a step prior to the activation of Raf-1 (Rider, L. G., Hirasawa, N., Santini, F., and Beaven, M. A. (1996) J. Immunol. 157, 2374-2380). We now show that treatment of cultured RBL-2H3 mast cells with nanomolar concentrations of dexamethasone causes dissociation of the Raf-1 heat shock protein 90 (Hsp90) complex. Raf-1 bereft of this protein fails to associate with the membrane or Ras in antigen-stimulated cells. Upstream events such as the Syk-dependent phosphorylation of Shc, the engagement of Shc with the adapter protein, Grb2, and the activation of Ras itself are unaffected. interestingly, the counterpart of Raf-1 in the c-Jun N-terminal kinase (JNK) cascade, MEKK-1 (mitogen-activated protein kinase/ERK kinase), is similarly associated with Hsp90 and this association as well as the activation of MEKK-1 are disrupted by dexamethasone treatment. Disruption of the ERK and JNK cascades at the level of Raf-1 and MEKK-1 could account for the inhibitory action of dexamethasone on the generation of inflammatory mediators in stimulated mast cells.