Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy

被引:26
作者
Chen, XinCai
Shi, JiYan
Chen, YingXu [1 ]
Xu, XiangHua
Chen, Litao
Wang, Hui
Hu, TianDou
机构
[1] Zhejiang Univ, Dept Environm Engn, Hangzhou 310029, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
Pseudomonas putida CZ1; chemical modification; FTIR; XAS; metal binding;
D O I
10.1007/s00253-006-0592-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.
引用
收藏
页码:881 / 889
页数:9
相关论文
共 42 条
[1]  
AKTHAR NM, 1996, BIOMETALS, V9, P21
[2]   Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans [J].
Bai, RS ;
Abraham, TE .
WATER RESEARCH, 2002, 36 (05) :1224-1236
[3]   SITES OF METAL-DEPOSITION IN THE CELL-WALL OF BACILLUS-SUBTILIS [J].
BEVERIDGE, TJ ;
MURRAY, RGE .
JOURNAL OF BACTERIOLOGY, 1980, 141 (02) :876-887
[4]   BIOSORPTION OF HEAVY-METAL CATIONS BY NONVIABLE YEAST BIOMASS [J].
BRADY, D ;
STOLL, A ;
DUNCAN, JR .
ENVIRONMENTAL TECHNOLOGY, 1994, 15 (05) :429-438
[5]  
BUX F, 1994, WATER SA, V20, P73
[6]   Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1 [J].
Chen, XC ;
Wang, YP ;
Lin, Q ;
Shi, JY ;
Wu, WX ;
Chen, YX .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2005, 46 (02) :101-107
[7]  
CONLEY RT, 1972, INFRARED SPECTROSC
[8]   INTERACTIONS OF METALS AND PROTONS WITH ALGAE [J].
CRIST, RH ;
OBERHOLSER, K ;
SCHWARTZ, D ;
MARZOFF, J ;
RYDER, D ;
CRIST, DR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1988, 22 (07) :755-760
[9]   NATURE OF BONDING BETWEEN METALLIC-IONS AND ALGAL CELL-WALLS [J].
CRIST, RH ;
OBERHOLSER, K ;
SHANK, N ;
NGUYEN, M .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1981, 15 (10) :1212-1217
[10]   CHEMICAL BASIS FOR SELECTIVITY OF METAL-IONS BY THE BACILLUS-SUBTILIS CELL-WALL [J].
DOYLE, RJ ;
MATTHEWS, TH ;
STREIPS, UN .
JOURNAL OF BACTERIOLOGY, 1980, 143 (01) :471-480