Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-α

被引:239
作者
Murakami, S [1 ]
Lefebvre, V [1 ]
de Crombrugghe, B [1 ]
机构
[1] Univ Texas, MD Anderson Canc Ctr, Dept Mol Genet, Houston, TX 77030 USA
关键词
D O I
10.1074/jbc.275.5.3687
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha) strongly inhibit the expression of genes for cartilage extracellular matrix proteins. We have recently obtained genetic evidence indicating that the high mobility group domain containing transcription factor Sox9 is required for cartilage formation and for expression of chondrocyte-specific genes including the gene for type II collagen (Col2a1). We show here that IL-1 and TNF-alpha cause a marked and rapid decrease in the levels of Sox9 mRNA and/or protein in chondrocytes. A role for the transcription factor NF kappa B in Sox9 down-regulation was suggested by the ability of pyrrolidine dithiocarbamate, an inhibitor of the NF kappa B pathway, to block the effects of IL-1 and TNF-alpha. This role was further supported by the ability of a dominant-negative mutant of I kappa B alpha to block the IL-1 and TNF-alpha inhibition of Sox9-dependent Col2a1 enhancer elements. Furthermore, forced expression of the NF kappa B subunits p65 or p50 also inhibited Sox9-dependent Col2a1 enhancer. Because Sox9 is essential for chondrogenesis, the marked down-regulation of the Sox9 gene by IL-1 and TNF-alpha in chondrocytes is sufficient to account for the inhibition of the chondrocyte phenotype by these cytokines. The down-regulation of Sox9 may have a crucial role in inhibiting expression of the cartilage phenotype in inflammatory joint diseases.
引用
收藏
页码:3687 / 3692
页数:6
相关论文
共 70 条
[1]   TUMOR-NECROSIS-FACTOR AND INTERLEUKIN-1 LEAD TO PHOSPHORYLATION AND LOSS OF I-KAPPA-B-ALPHA - A MECHANISM FOR NF-KAPPA-B ACTIVATION [J].
BEG, AA ;
FINCO, TS ;
NANTERMET, PV ;
BALDWIN, AS .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (06) :3301-3310
[2]   SOX9 directly regulates the type-II collagen gene [J].
Bell, DM ;
Leung, KKH ;
Wheatley, SC ;
Ng, LJ ;
Zhou, S ;
Ling, KW ;
Sham, MH ;
Koopman, P ;
Tam, PPL ;
Cheah, KSE .
NATURE GENETICS, 1997, 16 (02) :174-178
[3]   Sox9 is required for cartilage formation [J].
Bi, WM ;
Deng, JM ;
Zhang, ZP ;
Behringer, RR ;
de Crombrugghe, B .
NATURE GENETICS, 1999, 22 (01) :85-89
[4]   Quantification of aggrecan and link-protein mRNA in human articular cartilage of different ages by competitive reverse transcriptase-PCR [J].
Bolton, MC ;
Dudhia, J ;
Bayliss, MT .
BIOCHEMICAL JOURNAL, 1996, 319 :489-498
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   PROLONGED ACTIVATION OF JUN AND COLLAGENASE GENES BY TUMOR NECROSIS FACTOR-ALPHA [J].
BRENNER, DA ;
OHARA, M ;
ANGEL, P ;
CHOJKIER, M ;
KARIN, M .
NATURE, 1989, 337 (6208) :661-663
[7]   Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer [J].
Bridgewater, LC ;
Lefebvre, V ;
de Crombrugghe, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (24) :14998-15006
[8]   CENTRAL OF I-KAPPA-B-ALPHA PROTEOLYSIS BY SITE-SPECIFIC, SIGNAL-INDUCED PHOSPHORYLATION [J].
BROWN, K ;
GERSTBERGER, S ;
CARLSON, L ;
FRANZOSO, G ;
SIEBENLIST, U .
SCIENCE, 1995, 267 (5203) :1485-1488
[9]   Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors [J].
Bruce, AJ ;
Boling, W ;
Kindy, MS ;
Peschon, J ;
Kraemer, PJ ;
Carpenter, MK ;
Holtsberg, FW ;
Mattson, MP .
NATURE MEDICINE, 1996, 2 (07) :788-794
[10]  
BURNETTE WN, 1981, ANAL BIOCHEM, V112, P195, DOI 10.1016/0003-2697(81)90281-5