Defocusing regimes of nonlinear waves in media with negative dispersion

被引:22
作者
Berge, L
Kuznetsov, EA
Rasmussen, JJ
机构
[1] CEA, CTR ETUD LIMEIL VALENTON, F-94195 VILLENEUVE ST GEO, FRANCE
[2] LD LANDAU THEORET PHYS INST, MOSCOW 117940, RUSSIA
关键词
D O I
10.1103/PhysRevE.53.R1340
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Defocusing regimes of quasimonochromatic waves governed by a nonlinear Schrodinger equation with mixed-sign dispersion are investigated. For a power-law nonlinearity, we show that localized solutions to this equation defined at the so-called critical dimension cannot collapse in finite time in the sense that their transverse (anomalously dispersing) and longitudinal (normally dispersing) extensions never vanish. Solutions defined at the supercritical dimension are proved to exhibit a nonvanishing mean longitudinal size, and cannot transversally collapse if they are assumed to shrink along each spatial direction.
引用
收藏
页码:R1340 / R1343
页数:4
相关论文
共 14 条
[1]   TRANSIENT REGIMES OF ANISOTROPIC LIGHT-BEAM SELF-FOCUSING IN NONLINEAR DISPERSIVE MEDIA [J].
BERGE, L .
PHYSICS LETTERS A, 1994, 189 (04) :290-298
[2]  
BERKSHIRE FH, 1983, STUD APPL MATH, V69, P229
[3]  
GHIDAGLIA JM, IN PRESS J NONLINEAR
[4]   NON-LINEAR FOCUSING AND THE KELVIN-HELMHOLTZ INSTABILITY [J].
GIBBON, JD ;
MCGUINNESS, MJ .
PHYSICS LETTERS A, 1980, 77 (2-3) :118-122
[5]   SHARPER CRITERIA FOR THE WAVE COLLAPSE [J].
KUZNETSOV, EA ;
RASMUSSEN, JJ ;
RYPDAL, K ;
TURITSYN, SK .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) :273-284
[6]  
LITVAK AG, 1983, SOV J PLASMA PHYS, V9, P287
[7]  
LUSHNIKOV PM, 1995, JETP LETT+, V62, P461
[8]   SELF-MODULATION OF ION BERNSTEIN WAVES [J].
MYRA, JR ;
LIU, CS .
PHYSICS OF FLUIDS, 1980, 23 (11) :2258-2264
[9]  
NEWELL AC, 1992, ADV TOPICS INTERDISC, P50
[10]   BEAM COLLAPSE AS AN EXPLANATION FOR ANOMALOUS OCULAR DAMAGE [J].
POWELL, JA ;
MOLONEY, JV ;
NEWELL, AC ;
ALBANESE, RA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (07) :1230-1241