Ballistocardiogram artifact reduction in the simultaneous acquisition of auditory ERPS and fMRI

被引:51
作者
Ellingson, ML
Liebenthal, E
Spanaki, MV
Prieto, TE
Binder, JR
Ropella, KM
机构
[1] Med Coll Wisconsin, Dept Neurol, Milwaukee, WI 53226 USA
[2] Marquette Univ, Dept Biomed Engn, Milwaukee, WI 53201 USA
关键词
ballistocardiogram; electroencephalography; event-related potential;
D O I
10.1016/j.neuroimage.2004.03.033
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are now being combined to analyze brain function. Confounding the EEG signal acquired in the MR environment is a ballistocardiogram artifact (BA), which is predominantly caused by cardiac-related body movement. The objective of this study was to develop and evaluate a method for reducing these MR-induced artifacts to retrieve small auditory event-related potentials (ERPs) from EEG recorded during fMRI. An algorithm for BA reduction was developed that relies on timing information obtained from simultaneous electrocardiogram (ECG) recordings and subsequent creation of an adaptive BA template. The BA template is formed by media n-filtering 10 consecutive BA events in the EEG signal. The continuously updated template is then subtracted from each BA in the EEG. The auditory ERPs are obtained through signal averaging of the remaining EEG signal. Experimental and simulated ERP data were estimated to assess effectiveness of the BA reduction. Simulation showed that the algorithm reduced BA without significantly altering the morphology of a signal periodically inserted in the EEG. Auditory ERP data, obtained in a 1.5-T scanner during a passive auditory oddball paradigm and processed with the BA reduction algorithm, were comparable to data recorded in a mock scanner outside the magnetic field with the same experimental paradigm. It is concluded that through adequate reduction of the BA, relatively small auditory ERPs can be acquired in the MR environment. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1534 / 1542
页数:9
相关论文
共 32 条
[1]   Identification of EEG events in the MR scanner: The problem of pulse artifact and a method for its subtraction [J].
Allen, PJ ;
Polizzi, G ;
Krakow, K ;
Fish, DR ;
Lemieux, L .
NEUROIMAGE, 1998, 8 (03) :229-239
[2]   A method for removing imaging artifact from continuous EEG recorded during functional MRI [J].
Allen, PJ ;
Josephs, O ;
Turner, R .
NEUROIMAGE, 2000, 12 (02) :230-239
[3]   Event-related fMRI of the auditory cortex [J].
Belin, P ;
Zatorre, RJ ;
Hoge, R ;
Evans, AC ;
Pike, B .
NEUROIMAGE, 1999, 10 (04) :417-429
[4]   Motion and ballistocardiogram artifact removal for interleaved recording of EEG and EPs during MRI [J].
Bonmassar, G ;
Purdon, PL ;
Jääskeläinen, IP ;
Chiappa, K ;
Solo, V ;
Brown, EN ;
Belliveau, JW .
NEUROIMAGE, 2002, 16 (04) :1127-1141
[5]   Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI [J].
Bonmassar, G ;
Anami, K ;
Ives, J ;
Belliveau, JW .
NEUROREPORT, 1999, 10 (09) :1893-1897
[6]  
Edmister WB, 1999, HUM BRAIN MAPP, V7, P89, DOI 10.1002/(SICI)1097-0193(1999)7:2<89::AID-HBM2>3.0.CO
[7]  
2-N
[8]   Neural mechanisms of involuntary attention to acoustic novelty and change [J].
Escera, C ;
Alho, K ;
Winkler, I ;
t nen, RN .
JOURNAL OF COGNITIVE NEUROSCIENCE, 1998, 10 (05) :590-604
[9]  
ESCERA C, 1996, ELECTROEN CLIN NEURO, V100, P1
[10]   Acquiring simultaneous EEG and functional MRI [J].
Goldman, RI ;
Stern, JM ;
Engel, J ;
Cohen, MS .
CLINICAL NEUROPHYSIOLOGY, 2000, 111 (11) :1974-1980