Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently

被引:154
作者
Golldack, D
Quigley, F
Michalowski, CB
Kamasani, UR
Bohnert, HJ
机构
[1] Univ Arizona, Dept Biochem, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA
[3] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA
[4] Univ Bielefeld, Lehrstuhl Stoffwechselphysiol & Biochem Pflanzen, Bielefeld, Germany
[5] Univ Grenoble 1, CNRS, UMR 5575, Lab Genet Mol Plantes, Grenoble, France
关键词
in situ hybridization; NaCl stress; Oryza sativa; potassium channel;
D O I
10.1023/A:1020763218045
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the indica rice (Oryza sativa L.) a cDNA was characterized that encoded OsAKT1 homologous to inward-rectifying potassium channels of the AKT/KAT subfamily. Transcript analysis located OsAKT1 predominantly in roots with low abundance in leaves. Cell-specificity of OsAKT expression was analyzed by in situ hybridizations. In roots, strongest signals were localized to the epidermis and the endodermis, whereas lower transcript levels were detected in cells of the vasculature and the cortex. In leaves, expression was detected in xylem parenchyma, phloem, and mesophyll cells. Transcriptional regulation and cell specificity of OsAKT1 during salt stress was compared in rice lines showing different salinity tolerance. In the salt-tolerant, sodium-excluding varieties Pokkali and BK, OsAKT1 transcripts disappeared from the exodermis in plants treated with 150 mM NaCl for 48 h but OsAKT1 transcription was not repressed in these cells in the salt-sensitive, sodium-accumulating variety IR29. Significantly, all lines were able to maintain potassium levels under sodium stress conditions, while sodium concentrations in the leaves of IR29 increased 5-10-fold relative to the sodium concentration in BK or Pokkali. The divergent, line-dependent and salt-dependent, regulation of this channel does not significantly affect potassium homeostasis under salinity stress. Rather, repression in Pokkali/BK and lack of repression in IR29 correlate with the overall tolerance character of these lines.
引用
收藏
页码:71 / 81
页数:11
相关论文
共 48 条
[1]  
Ache P, 2001, PLANT J, V27, P571, DOI 10.1046/j.1365-313X.2001.t01-1-01116.x
[2]  
Amtmann A, 1999, ADV BOT RES, V29, P75
[3]   FUNCTIONAL EXPRESSION OF A PROBABLE ARABIDOPSIS-THALIANA POTASSIUM CHANNEL IN SACCHAROMYCES-CEREVISIAE [J].
ANDERSON, JA ;
HUPRIKAR, SS ;
KOCHIAN, LV ;
LUCAS, WJ ;
GABER, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3736-3740
[4]   Differential expression and regulation of K+ channels in the maize coleoptile:: molecular and biophysical analysis of cells isolated from cortex and vasculature [J].
Bauer, CS ;
Hoth, S ;
Haga, K ;
Philippar, K ;
Aoki, N ;
Hedrich, R .
PLANT JOURNAL, 2000, 24 (02) :139-145
[5]   Sodium transport in plant cells [J].
Blumwald, E ;
Aharon, GS ;
Apse, MP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2000, 1465 (1-2) :140-151
[6]   Enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells [J].
Buschmann, PH ;
Vaidyanathan, R ;
Gassmann, W ;
Schroeder, JI .
PLANT PHYSIOLOGY, 2000, 122 (04) :1387-1397
[7]   MULTIPLE GENES, TISSUE-SPECIFICITY, AND EXPRESSION-DEPENDENT MODULATION CONTRIBUTE TO THE FUNCTIONAL DIVERSITY OF POTASSIUM CHANNELS IN ARABIDOPSIS-THALIANA [J].
CAO, YW ;
WARD, JM ;
KELLY, WB ;
ICHIDA, AM ;
GABER, RF ;
ANDERSON, JA ;
UOZUMI, N ;
SCHROEDER, JI ;
CRAWFORD, NM .
PLANT PHYSIOLOGY, 1995, 109 (03) :1093-1106
[8]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[9]   Developmental and light-dependent regulation of a phloem-localised K+ channel of Arabidopsis thaliana [J].
Deeken, R ;
Sanders, C ;
Ache, P ;
Hedrich, R .
PLANT JOURNAL, 2000, 23 (02) :285-290
[10]   RESOLUTION OF DUAL MECHANISMS OF POTASSIUM ABSORPTION BY BARLEY ROOTS [J].
EPSTEIN, E ;
ELZAM, OE ;
RAINS, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1963, 49 (05) :684-&