A Lego system for conditional inference

被引:629
作者
Hothorn, Torsten
Hornik, Kurt
Van de Wiel, Mark A.
Zeileis, Achim
机构
[1] Univ Erlangen Nurnberg, Inst Med Informat Biometrie & Epidemiol, D-91054 Erlangen, Germany
[2] Wirtschaftsuniv Wien, Dept Math & Stat, A-1090 Vienna, Austria
[3] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
关键词
asymptotic distribution; independence; permutation tests; software;
D O I
10.1198/000313006X118430
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Conditioning on the observed data is an important and flexible design principle for statistical test procedures. Although generally applicable, permutation tests currently in use are limited to the treatment of special cases, such as contingency tables or K-sample problems. A new theoretical framework for permutation tests opens up the why to a unified and generalized view. This article argues that the transfer of such a theory to practical data analysis has important implications in many applications and requires tools that enable the data analyst to compute on the theoretical concepts as closely as possible. We reanalyze four datasets by adapting the general conceptual framework to these challenging inference problems and using the coin add-on package in the R system for statistical computing to show what one can gain from going, beyond the "classical" test procedures.
引用
收藏
页码:257 / 263
页数:7
相关论文
共 23 条
[1]  
[Anonymous], 2011, Categorical data analysis
[2]   An adjusted, asymmetric two-sample t test [J].
Balkin, SD ;
Mallows, CL .
AMERICAN STATISTICIAN, 2001, 55 (03) :203-206
[3]  
Berger VW, 2000, STAT MED, V19, P1319, DOI 10.1002/(SICI)1097-0258(20000530)19:10<1319::AID-SIM490>3.0.CO
[4]  
2-0
[5]   Joint analysis of the NACP-REP1 marker within the alpha synuclein gene concludes association with alcohol dependence [J].
Bönsch, D ;
Lederer, T ;
Reulbach, U ;
Hothorn, T ;
Kornhuber, J ;
Bleich, S .
HUMAN MOLECULAR GENETICS, 2005, 14 (07) :967-971
[6]  
Edgington E. S., 1987, RANDOMIZATION TESTS
[7]   Permutation methods: A basis for exact inference [J].
Ernst, MD .
STATISTICAL SCIENCE, 2004, 19 (04) :676-685
[8]  
Fisher Ronald A., 1935, DESIGN EXPT
[9]  
Genz A., 1992, J COMPUT GRAPH STAT, V1, P141
[10]  
Good P., 2000, PERMUTATION TESTS PR