Ubiquitination-mediated protein degradation and modification:: an emerging theme in plant-microbe interactions

被引:145
作者
Zeng, Li-Rong
Vega-Sanchez, Miguel E.
Zhu, Tong
Wang, Guo-Liang [1 ]
机构
[1] Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA
[2] Ohio State Univ, Plant Mol Biol & Biotechnol Program, Columbus, OH 43210 USA
[3] Syngenta Biotechnol Inc, Res Triangle Pk, NC 27709 USA
[4] Human Agr Univ, Rice Genom Lab, Changsha 410128, Hunan, Peoples R China
关键词
ubiquitination; defense response; plant-microbe interactions; U-box protein; Spl11;
D O I
10.1038/sj.cr.7310053
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Post-translational modification is central to protein stability and to the modulation of protein activity. Various types of protein modification, such as phosphorylation, methylation, acetylation, myristoylation, glycosylation, and ubiquitination, have been reported. Among them, ubiquitination distinguishes itself from others in that most of the ubiquitinated proteins are targeted to the 26S proteasome for degradation. The ubiquitin/26S proteasome system constitutes the major protein degradation pathway in the cell. In recent years, the importance of the ubiquitination machinery in the control of numerous eukaryotic cellular functions has been increasingly appreciated. Increasing number of E3 ubiquitin ligases and their substrates, including a variety of essential cellular regulators have been identified. Studies in the past several years have revealed that the ubiquitination system is important for a broad range of plant developmental processes and responses to abiotic and biotic stresses. This review discusses recent advances in the functional analysis of ubiquitination-associated proteins from plants and pathogens that play important roles in plant-microbe interactions.
引用
收藏
页码:413 / 426
页数:14
相关论文
共 127 条
[1]   The U box is a modified RING finger - a common domain in ubiquitination [J].
Aravind, L ;
Koonin, EV .
CURRENT BIOLOGY, 2000, 10 (04) :R132-R134
[2]   Regulatory role of SGT1 in early R gene-mediated plant defenses [J].
Austin, MJ ;
Muskett, P ;
Kahn, K ;
Feys, BJ ;
Jones, JDG ;
Parker, JE .
SCIENCE, 2002, 295 (5562) :2077-2080
[3]   The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance [J].
Azevedo, C ;
Sadanandom, A ;
Kitagawa, K ;
Freialdenhoven, A ;
Shirasu, K ;
Schulze-Lefert, P .
SCIENCE, 2002, 295 (5562) :2073-2076
[4]   The U-box protein family in plants [J].
Azevedo, C ;
Santos-Rosa, MJ ;
Shirasu, K .
TRENDS IN PLANT SCIENCE, 2001, 6 (08) :354-358
[5]  
Ballinger CA, 1999, MOL CELL BIOL, V19, P4535
[6]   Identification and characterization of mRNA transcripts differentially expressed in response to high salinity by means of differential display in the mangrove, Bruguiera gymnorrhiza [J].
Banzai, T ;
Hershkovits, G ;
Katcoff, DJ ;
Hanagata, N ;
Dubinsky, Z ;
Karube, I .
PLANT SCIENCE, 2002, 162 (04) :499-505
[7]   Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition [J].
Bonas, U ;
Lahaye, T .
CURRENT OPINION IN MICROBIOLOGY, 2002, 5 (01) :44-50
[8]   The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response [J].
Boyes, DC ;
Nam, J ;
Dangl, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15849-15854
[9]   Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase [J].
Cadwell, K ;
Coscoy, L .
SCIENCE, 2005, 309 (5731) :127-130
[10]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63