Mechanisms of catalysis and allosteric regulation of yeast chorismate mutase from crystal structures

被引:89
作者
Strater, N
Schnappauf, G
Braus, G
Lipscomb, WN
机构
[1] HARVARD UNIV,DEPT CHEM & BIOL CHEM,CAMBRIDGE,MA 02138
[2] FREE UNIV BERLIN,INST KRISTALLOG,D-14195 BERLIN,GERMANY
[3] UNIV GOTTINGEN,INST MIKROBIOL & GENET,D-37077 GOTTINGEN,GERMANY
基金
美国国家卫生研究院;
关键词
allosterism; Claisen rearrangement; pericyclic reaction; transition state analogue inhibitor; X-ray crystallography;
D O I
10.1016/S0969-2126(97)00294-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Chorismate mutase (GM) catalyzes the Claisen rearrangement of chorismate to prephenate, notably the only known enzymatically catalyzed pericyclic reaction in primary metabolism. Structures of the enzyme in complex with an endo-oxabicyclic transition state analogue inhibitor, previously determined for Bacillus subtilis and Escherichia coli CM, provide structural insight into the enzyme mechanism. In contrast to these bacterial CMs, yeast CM is allosterically regulated in two ways: activation by tryptophan and inhibition by tyrosine. Yeast CM exists in two allosteric states, R (active) and T (inactive). Results: We have determined crystal structures of wild-type yeast CM cocrystallized with tryptophan and an endo-oxabicyclic transition state analogue inhibitor, of wild-type yeast CM co-crystallized with tyrosine and the endo-oxabicyclic transition state analogue inhibitor and of the Thr226-->Ser mutant of yeast CM in complex with tryptophan. Binding of the transition state analogue inhibitor to CM keeps the enzyme in a 'super R' state, even if the inhibitory effector tyrosine is bound to the regulatory site. Conclusions: The endo-oxabicyclic inhibitor binds to yeast CM in a similar way as it does to the distantly related CM from E. coli. The inhibitor-binding mode supports a mechanism by which polar sidechains of the enzyme bind the substrate in the pseudo-diaxial conformation, which is required for catalytic turnover. A lysine and a protonated glutamate sidechain have a critical role in the stabilization of the transition state of the pericyclic reaction. The allosteric transition from T-->R state is accompanied by a 15 degrees rotation of one of the two subunits relative to the other (where 0 degrees rotation defines the T state). This rotation causes conformational changes at the dimer interface which are transmitted to the active site. An allosteric pathway is proposed to include residues Phe28, Asp24 and Glu23, which move toward the active-site cavity in the T state. In the presence of the transition-state analogue a super R state is formed, which is characterised by a 22 degrees rotation of one subunit relative to the other.
引用
收藏
页码:1437 / 1452
页数:16
相关论文
共 31 条
[1]   SECONDARY TRITIUM ISOTOPE EFFECTS AS PROBES OF THE ENZYMIC AND NON-ENZYMIC CONVERSION OF CHORISMATE TO PREPHENATE [J].
ADDADI, L ;
JAFFE, EK ;
KNOWLES, JR .
BIOCHEMISTRY, 1983, 22 (19) :4494-4501
[2]   TRANSITION-STATE STABILIZATION AND ENZYMIC CATALYSIS - KINETIC AND MOLECULAR-ORBITAL STUDIES OF REARRANGEMENT OF CHORISMATE TO PREPHENATE [J].
ANDREWS, PR ;
SMITH, GD ;
YOUNG, IG .
BIOCHEMISTRY, 1973, 12 (18) :3492-3498
[3]  
[Anonymous], BIOSYNTHESIS AROMATI
[4]   AN INHIBITOR OF CHORISMATE MUTASE RESEMBLING THE TRANSITION-STATE CONFORMATION [J].
BARTLETT, PA ;
JOHNSON, CR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (25) :7792-7793
[6]  
BRUNGER AT, 1992, X PLOR VERSION 3 1
[7]  
*CCCP4, 1994, ACTA CRYSTALLOGR D, V50, P760
[8]   CRYSTAL-STRUCTURES OF THE MONOFUNCTIONAL CHORISMATE MUTASE FROM BACILLUS-SUBTILIS AND ITS COMPLEX WITH A TRANSITION-STATE ANALOG [J].
CHOOK, YM ;
KE, HM ;
LIPSCOMB, WN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (18) :8600-8603
[9]   THE MONOFUNCTIONAL CHORISMATE MUTASE FROM BACILLUS-SUBTILIS - STRUCTURE DETERMINATION OF CHORISMATE MUTASE AND ITS COMPLEXES WITH A TRANSITION-STATE ANALOG AND PREPHENATE, AND IMPLICATIONS FOR THE MECHANISM OF THE ENZYMATIC-REACTION [J].
CHOOK, YM ;
GRAY, JV ;
KE, HM ;
LIPSCOMB, WN .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 240 (05) :476-500
[10]   THE CONFORMATIONAL EQUILIBRIUM OF CHORISMATE IN SOLUTION - IMPLICATIONS FOR THE MECHANISM OF THE NONENZYMATIC AND THE ENZYME-CATALYZED REARRANGEMENT OF CHORISMATE TO PREPHENATE [J].
COPLEY, SD ;
KNOWLES, JR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (16) :5008-5013