The folding and unfolding of eukaryotic chromatin

被引:59
作者
Bassett, Andrew [2 ]
Cooper, Sarah [3 ]
Wu, Chenyi [1 ]
Travers, Andrew [1 ,4 ]
机构
[1] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
[2] Univ Cambridge, Dept Plant Sci, Cambridge CB2 3EA, England
[3] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
[4] Ecole Normale Super, LBPA, Fdn Pierre Gilles Gennes, F-94230 Cachan, France
基金
英国医学研究理事会;
关键词
NUCLEOSOME CORE PARTICLE; X-RAY-DIFFRACTION; H4-K16; ACETYLATION; HISTONE; FIBER; DNA; PROTEIN; COMPLEX; HETEROCHROMATIN; CONSTRAINTS;
D O I
10.1016/j.gde.2009.02.010
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In vivo, chromatin exists as fibres with differing degrees of compaction. We argue here that the packing density of the chromatin fibre is an important parameter, such that fibres with six nucleosomes/11 nm are enriched in 'euchromatin' while more highly compacted forms with higher packing densities correspond to some heterochromatic regions. The fibre forms differ in the extent of nucleosome stacking-in the '30 nm' fibre stacking is suboptimal while in 'heterochromatic' fibres optimal stacking allows a greater compaction. One factor affecting the choice of different endpoints in fibre formation depends on the homogeneity and optimisation of linker length within a nucleosomal array. The '30 nm' fibre can accommodate some variation in linker length while formation of the more compact forms requires that linker lengths be homogeneous and optimal. In vivo, chromatin remodelling machines and histone tail modifications would mediate and regulate this optimisation.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 54 条
[1]   THE DIAMETERS OF FROZEN-HYDRATED CHROMATIN FIBERS INCREASE WITH DNA LINKER LENGTH - EVIDENCE IN SUPPORT OF VARIABLE DIAMETER MODELS FOR CHROMATIN [J].
ATHEY, BD ;
SMITH, MF ;
RANKERT, DA ;
WILLIAMS, SP ;
LANGMORE, JP .
JOURNAL OF CELL BIOLOGY, 1990, 111 (03) :795-806
[2]   The Chromatin Remodelling Factor dATRX Is Involved in Heterochromatin Formation [J].
Bassett, Andrew R. ;
Cooper, Sarah E. ;
Ragab, Anan ;
Travers, Andrew A. .
PLOS ONE, 2008, 3 (05)
[3]   WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci [J].
Bozhenok, L ;
Wade, PA ;
Varga-Weisz, P .
EMBO JOURNAL, 2002, 21 (09) :2231-2241
[4]   CHANGES IN CHROMATIN FOLDING IN SOLUTION [J].
BUTLER, PJG ;
THOMAS, JO .
JOURNAL OF MOLECULAR BIOLOGY, 1980, 140 (04) :505-529
[5]   XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans [J].
Cardoso, C ;
Couillault, C ;
Mignon-Ravix, C ;
Millet, A ;
Ewbank, JJ ;
Fontés, M ;
Pujol, N .
DEVELOPMENTAL BIOLOGY, 2005, 278 (01) :49-59
[6]   ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo [J].
Corona, Davide F. V. ;
Siriaco, Giorgia ;
Armstrong, Jennifer A. ;
Snarskaya, Natalia ;
McClymont, Stephanie A. ;
Scott, Matthew P. ;
Tamkun, John W. .
PLOS BIOLOGY, 2007, 5 (09) :2011-2021
[7]   Physical constraints in the condensation of eukaryotic chromosomes. Local concentration of DNA versus linear packing ratio in higher order chromatin structures [J].
Daban, JR .
BIOCHEMISTRY, 2000, 39 (14) :3861-3866
[8]   HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding [J].
Daujat, S ;
Zeissler, U ;
Waldmann, T ;
Happel, N ;
Schneider, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (45) :38090-38095
[9]   The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo [J].
Deuring, R ;
Fanti, L ;
Armstrong, JA ;
Sarte, M ;
Papoulas, O ;
Prestel, M ;
Daubresse, G ;
Verardo, M ;
Moseley, SL ;
Berloco, M ;
Tsukiyama, T ;
Wu, C ;
Pimpinelli, S ;
Tamkun, JW .
MOLECULAR CELL, 2000, 5 (02) :355-365
[10]   Chromatin fiber folding: Requirement for the histone H4N-terminal tail [J].
Dorigo, B ;
Schalch, T ;
Bystricky, K ;
Richmond, TJ .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 327 (01) :85-96