Algorithms for worst case identification H∞ in the ν-gap metric

被引:17
作者
Date, P [1 ]
Vinnicombe, G
机构
[1] Brunel Univ, Dept Math Sci, Ctr Anal Risk & Optimisat Modelling Applicat, Uxbridge UB8 3PH, Middx, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1TN, England
关键词
robust identification; identification for control; v-gap metric;
D O I
10.1016/j.automatica.2004.01.019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers two robustly convergent algorithms for the identification of a linear system from (possibly) noisy frequency response data. Both algorithms are based on the same principle; obtaining a good worst case fit to the data under a smoothness constraint on the obtained model. However they differ in their notions of distance and smoothness. The first algorithm yields an FIR model of a stable system and is optimal, in a certain sense for a finite model order. The second algorithm may be used for modelling unstable plants and yields a real rational approximation in the L-2-gap. Given a model and a controller stabilising the true plant, a procedure for winding number correction is also suggested. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:995 / 1002
页数:8
相关论文
共 14 条
[1]   WORST-CASE SYSTEM-IDENTIFICATION IN H-INFINITY - VALIDATION OF A-PRIORI INFORMATION, ESSENTIALLY OPTIMAL-ALGORITHMS, AND ERROR-BOUNDS [J].
CHEN, J ;
NETT, CN ;
FAN, MKH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (07) :1260-1265
[2]  
DATE P, 1999, P 38 C DEC CONTR
[3]   A LINEAR MATRIX INEQUALITY APPROACH TO H-INFINITY CONTROL [J].
GAHINET, P ;
APKARIAN, P .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1994, 4 (04) :421-448
[4]  
Glaum M, 1996, IEEE DECIS CONTR P, P2318, DOI 10.1109/CDC.1996.573119
[5]   Modeling of normalized coprime factors with ν-metric uncertainty [J].
Gu, GX .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (08) :1498-1511
[6]   A CLASS OF ALGORITHMS FOR IDENTIFICATION IN ETA-INFINITY [J].
GU, GX ;
KHARGONEKAR, PP .
AUTOMATICA, 1992, 28 (02) :299-312
[7]   CONTROL ORIENTED SYSTEM-IDENTIFICATION - A WORST-CASE DETERMINISTIC APPROACH IN H-INFINITY [J].
HELMICKI, AJ ;
JACOBSON, CA ;
NETT, CN .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (10) :1163-1176
[8]   Worst-case control-relevant identification [J].
Makila, PM ;
Partington, JR ;
Gustafsson, TK .
AUTOMATICA, 1995, 31 (12) :1799-1819
[9]   ROBUST IDENTIFICATION OF STRONGLY STABILIZABLE SYSTEMS [J].
MAKILA, PM ;
PARTINGTON, JR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (11) :1709-1716
[10]  
Partington J. R., 1997, Interpolation, Identification, and Sampling