Role of the cytoplasmic tail of ecotropic Moloney murine leukemia virus Env protein in fusion pore formation

被引:51
作者
Melikyan, GB
Markosyan, RM
Brener, SA
Rozenberg, Y
Cohen, FS
机构
[1] Rush Med Coll, Dept Mol Biophys & Physiol, Chicago, IL 60612 USA
[2] Univ So Calif, Sch Med, Gene Therapy Labs, Norris Canc Ctr, Los Angeles, CA 90033 USA
关键词
D O I
10.1128/JVI.74.1.447-455.2000
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Fusion between cells expressing envelope protein (Env) of Moloney murine leukemia virus and target cells were studied by use of video fluorescence microscopy and electrical capacitance measurements. When the full-length 632-amino-acid residue Env was expressed, fusion did not occur at all for 3T3 cells as target and only somewhat for XC6 cells. Expression of Env 616*--a construct of Env with the last 16 amino acid residues (617 to 632; the R peptide) deleted from its C terminus to match the proteolytically cleaved Env produced during viral budding--resulted in high levels of fusion. Env 601*, lacking the entire cytoplasmic tail (CT) (identified by hydrophobicity), also led to fusion. Truncation of an additional six residues (Env 595*) abolished fusion. The kinetics of forming fusion pores did not depend on whether cells were first prebound at 4 degrees C and the time until fusion measured after the temperature was raised to 37 degrees C or whether cells were first brought into contact at 37 degrees C and the time until fusion immediately measured. This similarity in kinetics indicates that binding is accomplished quickly compared to subsequent steps in fusion. The fusion pores formed by Env 601* and Env 616* had the same initial size and enlarged in similar manners. Thus, once the R peptide is removed, the CT is not needed for fusion and does not affect formed pores. However, residues 595 to 601 are required for fusion. It is suggested here that the ectodomain and membrane-spanning domain of Env are directly responsible for fusion and that the R peptide affects their configurations at some point during the fusion process, thereby indirectly controlling fusion.
引用
收藏
页码:447 / 455
页数:9
相关论文
共 46 条
[1]   Truncation of the COOH-terminal region of the paramyxovirus SV5 fusion protein leads to hemifusion but not complete fusion [J].
Bagai, S ;
Lamb, RA .
JOURNAL OF CELL BIOLOGY, 1996, 135 (01) :73-84
[2]   Structural basis for paramyxovirus-mediated membrane fusion [J].
Baker, KA ;
Dutch, RE ;
Lamb, RA ;
Jardetzky, TS .
MOLECULAR CELL, 1999, 3 (03) :309-319
[3]   Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events [J].
Blumenthal, R ;
Sarkar, DP ;
Durell, S ;
Howard, DE ;
Morris, SJ .
JOURNAL OF CELL BIOLOGY, 1996, 135 (01) :63-71
[4]   STRUCTURE OF INFLUENZA HEMAGGLUTININ AT THE PH OF MEMBRANE-FUSION [J].
BULLOUGH, PA ;
HUGHSON, FM ;
SKEHEL, JJ ;
WILEY, DC .
NATURE, 1994, 371 (6492) :37-43
[5]   Core structure of gp41 from the HIV envelope glycoprotein [J].
Chan, DC ;
Fass, D ;
Berger, JM ;
Kim, PS .
CELL, 1997, 89 (02) :263-273
[6]   The pathway of membrane fusion catalyzed by influenza hemagglutinin: Restriction of lipids, hemifusion, and lipidic fusion pore formation [J].
Chernomordik, LV ;
Frolov, VA ;
Leikina, E ;
Bronk, P ;
Zimmerberg, J .
JOURNAL OF CELL BIOLOGY, 1998, 140 (06) :1369-1382
[7]   An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids [J].
Chernomordik, LV ;
Leikina, E ;
Frolov, V ;
Bronk, P ;
Zimmerberg, J .
JOURNAL OF CELL BIOLOGY, 1997, 136 (01) :81-93
[8]   The transmembrane domain in viral fusion: Essential role for a conserved glycine residue in vesicular stomatitis virus G protein [J].
Cleverley, DZ ;
Lenard, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3425-3430
[9]   Methodologies in the study of cell-cell fusion [J].
Cohen, FS ;
Melikyan, GB .
METHODS, 1998, 16 (02) :215-226
[10]   A DELETION MUTATION IN THE 5' PART OF THE POL GENE OF MOLONEY MURINE LEUKEMIA-VIRUS BLOCKS PROTEOLYTIC PROCESSING OF THE GAG AND POL POLYPROTEINS [J].
CRAWFORD, S ;
GOFF, SP .
JOURNAL OF VIROLOGY, 1985, 53 (03) :899-907