Environment, mitochondria, and Parkinson's disease

被引:170
作者
Sherer, TB [1 ]
Betarbet, R [1 ]
Greenamyre, JT [1 ]
机构
[1] Emory Univ, Dept Neurol, Atlanta, GA 30322 USA
关键词
neurodegeneration; oxidative stress; excitotoxicity; pesticides;
D O I
10.1177/1073858402008003004
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Parkinson's disease (PD) is a common and disabling neurodegenerative disease marked by progressive motor dysfunction, which results from selective degeneration of the nigrostriatal pathway. Epidemiological studies indicate that exposure to pesticides, rural living, farming, and drinking well water are associated with an increased risk of developing PD. Rare cases of PD are caused by mutations in nuclear genes, and there is increasing evidence for susceptibility genes that alter disease risk. Parkinson's disease is also associated with a systemic defect in mitochondrial complex I activity. Animal models indicate that exposure to inhibitors of mitochondrial complex 1, including pesticides, is sufficient to reproduce the features of PD, but genetic factors clearly modulate susceptibility. Complex I defects may result in oxidative stress and increase the susceptibility of neurons to excitotoxic death. In this way, environmental exposures and mitochondrial dysfunction may interact and result in neurodegeneration.
引用
收藏
页码:192 / 197
页数:6
相关论文
共 44 条
[1]  
Alam ZI, 1997, J NEUROCHEM, V69, P1326
[2]   Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra [J].
Alam, ZI ;
Jenner, A ;
Daniel, SE ;
Lees, AJ ;
Cairns, N ;
Marsden, CD ;
Jenner, P ;
Halliwell, B .
JOURNAL OF NEUROCHEMISTRY, 1997, 69 (03) :1196-1203
[3]   REVERSAL OF EXPERIMENTAL PARKINSONISM BY LESIONS OF THE SUBTHALAMIC NUCLEUS [J].
BERGMAN, H ;
WICHMANN, T ;
DELONG, MR .
SCIENCE, 1990, 249 (4975) :1436-1438
[4]   Chronic systemic pesticide exposure reproduces features of Parkinson's disease [J].
Betarbet, R ;
Sherer, TB ;
MacKenzie, G ;
Garcia-Osuna, M ;
Panov, AV ;
Greenamyre, JT .
NATURE NEUROSCIENCE, 2000, 3 (12) :1301-1306
[5]  
BETARBET R, 2001, SOC NEUR ABSTR
[6]   Subthalamic infusion of an NMDA antagonist prevents basal ganglia metabolic changes and nigral degeneration in a rodent model of Parkinson's disease [J].
Blandini, F ;
Nappi, G ;
Greenamyre, JT .
ANNALS OF NEUROLOGY, 2001, 49 (04) :525-529
[7]   BASAL LIPID-PEROXIDATION IN SUBSTANTIA NIGRA IS INCREASED IN PARKINSONS-DISEASE [J].
DEXTER, DT ;
CARTER, CJ ;
WELLS, FR ;
JAVOYAGID, F ;
AGID, Y ;
LEES, A ;
JENNER, P ;
MARSDEN, CD .
JOURNAL OF NEUROCHEMISTRY, 1989, 52 (02) :381-389
[8]   Inhibitors of NADH-ubiquinone reductase: an overview [J].
Esposti, MD .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1998, 1364 (02) :222-235
[9]   α-synuclein gene haplotypes are associated with Parkinson's disease [J].
Farrer, M ;
Maraganore, DM ;
Lockhart, P ;
Singleton, A ;
Lesnick, TG ;
de Andrade, M ;
West, A ;
de Silva, R ;
Hardy, J ;
Hernandez, D .
HUMAN MOLECULAR GENETICS, 2001, 10 (17) :1847-1851
[10]   Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions [J].
Giasson, BI ;
Duda, JE ;
Murray, IVJ ;
Chen, QP ;
Souza, JM ;
Hurtig, HI ;
Ischiropoulos, H ;
Trojanowski, JQ ;
Lee, VMY .
SCIENCE, 2000, 290 (5493) :985-989