High-order curvatures and harmonicity regression

被引:3
作者
Alabiso, C [1 ]
Casartelli, M [1 ]
机构
[1] UNIV PARMA,DIPARTIMENTO FIS,I-43100 PARMA,ITALY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 20期
关键词
D O I
10.1088/0305-4470/30/20/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider curvatures kappa(i) of all orders, as defined by the generalized Frenet-Serret formulae, along the trajectories of a classical Hamiltonian system with N degrees of freedom. In the spirit of previous experiments on the first two of them, time averages are numerically computed for the curvatures up to fifth order and for the microcanonical density in a typical anharmonic system (the FPU quartic chain), with checks in other models. Neat breakdowns of harmonic-like behaviour define thresholds to anharmonicity for every kappa(i) at distinct values (u) over tilde(i) of the order parameter (the energy density u). The threshold (u) over tilde(i) at fixed order i is independent of the total N, and it rapidly decreases as i grows. However, all curvatures are simultaneously sensitive or not to the initial conditions, for u < (u) over tilde(1) or u > (u) over tilde(1) respectively, confirming the previous identification of (u) over tilde(1) as an efficient indicator of the strong stochasticity transition. This phenomenology, which is discussed within the weak/strong stochasticity problem, gives a new insight into the progressive enforcement of a harmonic-like structure as u decreases.
引用
收藏
页码:7009 / 7020
页数:12
相关论文
共 19 条
  • [1] NEARLY SEPARABLE BEHAVIOR OF FERMI-PASTA-ULAM CHAINS THROUGH THE STOCHASTICITY THRESHOLD
    ALABISO, C
    CASARTELLI, M
    MARENZONI, P
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (1-2) : 451 - 471
  • [2] Curvature, torsion, microcanonical density and stochastic transition
    Alabiso, C
    Besagni, N
    Casartelli, M
    Marenzoni, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14): : 3733 - 3747
  • [3] THERMODYNAMIC LIMIT BEYOND THE STOCHASTICITY THRESHOLD IN NONLINEAR CHAINS
    ALABISO, C
    CASARTELLI, M
    MARENZONI, P
    [J]. PHYSICS LETTERS A, 1993, 183 (04) : 305 - 310
  • [4] ALLENDOERFER CB, 1974, CALCULUS SEVERAL VAR
  • [5] KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS
    BENETTIN, G
    GALGANI, L
    STRELCYN, JM
    [J]. PHYSICAL REVIEW A, 1976, 14 (06): : 2338 - 2345
  • [6] COMPLEXITY, RATE OF ENERGY EXCHANGES AND STOCHASTICITY
    CASARTELLI, M
    SELLO, S
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1987, 97 (02): : 183 - 199
  • [7] LOW STOCHASTICITY AND RELAXATION IN THE HENON-HEILES MODEL
    CASARTELLI, M
    SELLO, S
    [J]. PHYSICS LETTERS A, 1985, 112 (6-7) : 249 - 253
  • [8] CASARTELLI M, 1987, ADV NONLINEAR DYNAMI, V2
  • [9] ANALYTIC COMPUTATION OF THE STRONG STOCHASTICITY THRESHOLD IN HAMILTONIAN-DYNAMICS USING RIEMANNIAN GEOMETRY
    CASETTI, L
    PETTINI, M
    [J]. PHYSICAL REVIEW E, 1993, 48 (06): : 4320 - 4332
  • [10] GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS
    CASETTI, L
    LIVI, R
    PETTINI, M
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (03) : 375 - 378