Thermodynamic penalty arising from burial of a ligand polar group within a hydrophobic pocket of a protein receptor

被引:39
作者
Barratt, Elizabeth
Bronowska, Agnieszka
Vondrasek, Jiri
Cerny, Jiri
Bingham, Richard
Phillips, Simon
Homans, Steve W. [1 ]
机构
[1] Univ Leeds, Astbury Ctr Struct Mol Biol, Sch Biol & Mol Biol, Leeds LS2 9JT, W Yorkshire, England
[2] Acad Sci Czech Republic, Inst Organ Chem & Biochem, CR-16610 Prague, Czech Republic
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
thermodynamics; ITC; binding; hydrophobicity; hgand-protein interactions;
D O I
10.1016/j.jmb.2006.07.067
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Here, we examine the thermodynamic penalty arising from burial of a polar group in a hydrophobic pocket that forms part of the binding-site of the major urinary protein (MUP-I). X-ray crystal structures of the complexes of octanol, nonanol and 1,8 octan-diol indicate that these ligands bind with similar orientations in the binding pocket. Each complex is characterised by a bridging water molecule between the hydroxyl group of Tyr120 and the hydroxyl group of each ligand. The additional hydroxyl group of 1,8 octandiol is thereby forced to reside in a hydrophobic pocket, and isothermal titration calorimetry experiments indicate that this is accompanied by a standard free energy penalty of +21 kJ/mol with respect to octanol and + 18 kJ/mol with respect to nonanol. Consideration of the solvation thermodynamics of each ligand enables the "intrinsic" (solute-solute) interaction energy to be determined, which indicates a favourable enthalpic component and an entropic component that is small or zero. These data indicate that the thermodynamic penalty to binding derived from the unfavourable desolvation of 1,8 octan-diol is partially offset by a favourable intrinsic contribution. Quantum chemical calculations suggest that this latter contribution derives from favourable solute-solute dispersion interactions. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:994 / 1003
页数:10
相关论文
共 41 条
[1]   ELECTRONIC-STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS - THE PROGRAM SYSTEM TURBOMOLE [J].
AHLRICHS, R ;
BAR, M ;
HASER, M ;
HORN, H ;
KOLMEL, C .
CHEMICAL PHYSICS LETTERS, 1989, 162 (03) :165-169
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   Van der waals interactions dominate ligand-protein association in a protein binding site occluded from solvent water [J].
Barratt, E ;
Bingham, RJ ;
Warner, DJ ;
Laughton, CA ;
Phillips, SEV ;
Homans, SW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (33) :11827-11834
[4]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[5]   Thermodynamics of binding of 2-methoxy-3-isopropylpyrazine and 2-methoxy-3-isobutylpyrazine to the major urinary protein [J].
Bingham, RJ ;
Findlay, JBC ;
Hsieh, SY ;
Kalverda, AP ;
Kjeliberg, A ;
Perazzolo, C ;
Phillips, SEV ;
Seshadri, K ;
Trinh, CH ;
Turnbull, WB ;
Bodenhausen, G ;
Homans, SW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (06) :1675-1681
[6]   ENERGETIC COST AND STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA-]SER AND VAL-]THR SUBSTITUTIONS IN T4 LYSOZYME [J].
BLABER, M ;
LINDSTROM, JD ;
GASSNER, N ;
XU, J ;
DIRK, WH ;
MATTHEWS, BW .
BIOCHEMISTRY, 1993, 32 (42) :11363-11373
[7]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[8]   ENERGETIC CONTRIBUTION OF SIDE-CHAIN HYDROGEN-BONDING TO THE STABILITY OF STAPHYLOCOCCAL NUCLEASE [J].
BYRNE, MP ;
MANUEL, RL ;
LOWE, LG ;
STITES, WE .
BIOCHEMISTRY, 1995, 34 (42) :13949-13960
[9]   GROUP CONTRIBUTIONS TO THE THERMODYNAMIC PROPERTIES OF NON-IONIC ORGANIC SOLUTES IN DILUTE AQUEOUS-SOLUTION [J].
CABANI, S ;
GIANNI, P ;
MOLLICA, V ;
LEPORI, L .
JOURNAL OF SOLUTION CHEMISTRY, 1981, 10 (08) :563-595
[10]  
Case D.A., 2004, AMBER 8