Subauroral red arcs as a conjugate phenomenon: comparison of OV1-10 satellite data with numerical calculations

被引:31
作者
Pavlov, AV
机构
[1] Institute of Terrestrial Magnetism, Ionosphere Radio-Wave Propagation, Russia Academy of Science. (IZMIRAN), Troitsk
来源
ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES | 1997年 / 15卷 / 08期
关键词
D O I
10.1007/s00585-997-0984-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This study compares the OV1-10 satellite measurements of the integral airglow intensities at 630 nm in the SAR are regions observed in the northern and southern hemisphere as a conjugate phenomenon, with the model results obtained using the time-dependent one-dimensional mathematical model of the Earth ionosphere and plasmasphere (the IZMIRAN model) during the geomagnetic storm of the period 15-17 February 1967. The major enhancements to the IZMIRAN model developed in this study are the inclusion of He+ ions (three major ions: O+, H+, and He+, and three ion temperatures), the updated photochemistry and energy balance equations for ions and electrons, the diffusion of NO+ and O-2(+) ions and O(D-1) and the revised electron cooling rates arising from their collisions with unexcited N-2, O-2 molecules and N-2 molecules at the first vibrational level. The updated model includes the option to use the models of the Boltzmann or non-Boltzmann distributions of vibrationally excited molecular nitrogen. Deviations from the Boltzmann distribution for the first five vibrational levels of N-2 were calculated. The calculated distribution is highly non-Boltzmann at vibrational levels upsilon > 2 and leads to a decrease in the calculated electron density and integral intensity at 630 nm in the northern and southern hemispheres in comparison with the electron density and integral intensity calculated using the Boltzmann vibrational distribution of N-2. It is found that the intensity at 630 nm is very sensitive to the oxygen number densities. Good agreement between the modeled and measured intensities is obtained provided that at all altitudes of the southern hemisphere a reduction of about factor 1.35 in MSIS-86 atomic oxygen densities is included in the IZMIRAN model with the non-Boltzmann vibrational distribution of N-2. The effect of using of the O(D-1) diffusion results in the decrease of 4-6% in the calculated integral intensity of the northern hemisphere and 7-13% in the calculated integral intensity of the southern hemisphere. It is found that the modeled intensities of the southern hemisphere are more sensitive to the assumed values of the rate coefficients of O+(S-4) ions with the vibrationally excited nitrogen molecules and quenching of O+(D-2) by atomic oxygen than the modeled intensities of the northern hemisphere.
引用
收藏
页码:984 / 998
页数:15
相关论文
共 89 条
[1]   RESULTS OF A COMPREHENSIVE STUDY OF THE PHOTOCHEMISTRY OF N-2+ IN THE IONOSPHERE [J].
ABDOU, WA ;
TORR, DG ;
RICHARDS, PG ;
TORR, MR ;
BREIG, EL .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1984, 89 (NA10) :9069-9079
[2]   PRODUCT-ION DISTRIBUTIONS FOR SOME ION-MOLECULE REACTIONS [J].
ADAMS, NG ;
SMITH, D .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1976, 9 (08) :1439-1451
[3]   EFFECTS OF ION SPEED DISTRIBUTIONS IN FLOW-DRIFT TUBE STUDIES OF ION-NEUTRAL REACTIONS [J].
ALBRITTON, DL ;
DOTAN, I ;
LINDINGER, W ;
MCFARLAND, M ;
TELLINGHUISEN, J ;
FEHSENFELD, FC .
JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (02) :410-421
[4]  
BAILEY GJ, 1990, ANN GEOPHYS, V8, P171
[5]  
BANKS PM, 1973, AERONOMY
[6]   O+ CHARGE-EXCHANGE IN THE POLAR WIND [J].
BARAKAT, AR ;
SCHUNK, RW .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1984, 89 (NA11) :9835-9839
[7]   RECOMBINATION IN THE NORMAL E-LAYERS AND F-LAYERS OF THE IONOSPHERE [J].
BATES, DR .
PLANETARY AND SPACE SCIENCE, 1988, 36 (01) :55-63
[8]  
BILITZA D, 1990, ADV SPACE RES, V10
[9]   FLOWING AFTERGLOW LANGMUIR PROBE MEASUREMENT OF THE N2+(V = 0) DISSOCIATIVE RECOMBINATION RATE COEFFICIENT [J].
CANOSA, A ;
GOMET, JC ;
ROWE, BR ;
QUEFFELEC, JL .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (11) :7159-7163
[10]   REEVALUATION OF THE O+(P-2) REACTION-RATE COEFFICIENTS DERIVED FROM ATMOSPHERE EXPLORER-C OBSERVATIONS [J].
CHANG, T ;
TORR, DG ;
RICHARDS, PG ;
SOLOMON, SC .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1993, 98 (A9) :15589-15597