Impedance nanopore biosensor: influence of pore dimensions on biosensing performance

被引:42
作者
Kant, Krishna [1 ,3 ]
Yu, Jingxian [2 ]
Priest, Craig [4 ]
Shapter, Joe G. [1 ]
Losic, Dusan [3 ]
机构
[1] Flinders Univ S Australia, Sch Chem & Phys Sci, Adelaide, SA 5042, Australia
[2] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia
[3] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[4] Univ S Australia, Ian Wark Res Inst, Adelaide, SA 5095, Australia
基金
澳大利亚研究理事会;
关键词
EMERGING APPLICATIONS; ALUMINA MEMBRANES; ANODIC ALUMINA; SPECTROSCOPY; FILMS; AMPLIFICATION; IMMUNOSENSOR; STREPTAVIDIN; BIOTIN; ARRAYS;
D O I
10.1039/c3an01933k
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 mu m) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 mu m provide better biosensing performance.
引用
收藏
页码:1134 / 1140
页数:7
相关论文
共 42 条
[1]   DNA biosensor using fluorescence microscopy and impedance spectroscopy [J].
Berdat, Daniel ;
Marin, Annick ;
Herrera, Fernando ;
Gijs, Martin A. M. .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 118 (1-2) :53-59
[2]   Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor [J].
Binh Thi Thanh Nguyen ;
Peh, Alister En Kai ;
Chee, Celine Yue Ling ;
Fink, Katja ;
Chow, Vincent T. K. ;
Ng, Mary M. L. ;
Toh, Chee-Seng .
BIOELECTROCHEMISTRY, 2012, 88 :15-21
[3]   Electrochemical Impedance Spectroscopy [J].
Chang, Byoung-Yong ;
Park, Su-Moon .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 3, 2010, 3 :207-229
[4]   A rapid electrochemical biosensor based on an AC electrokinetics enhanced immuno-reaction [J].
Cheng, I-Fang ;
Yang, Hsiao-Lan ;
Chung, Cheng-Che ;
Chang, Hsien-Chang .
ANALYST, 2013, 138 (16) :4656-4662
[5]   Impedance and dielectric characterizations of ionic partitioning in interfaces that membranous, biomimetic and gold surfaces form with electrolytes [J].
Chilcott, Terry C. ;
Guo, Chuan .
ELECTROCHIMICA ACTA, 2013, 98 :274-287
[6]   Label-free impedance biosensors: Opportunities and challenges [J].
Daniels, Jonathan S. ;
Pourmand, Nader .
ELECTROANALYSIS, 2007, 19 (12) :1239-1257
[7]   Encapsulation of enzymes in alumina membranes of controlled pore size [J].
Darder, M ;
Aranda, P ;
Hernández-Vélez, M ;
Manova, E ;
Ruiz-Hitzky, E .
THIN SOLID FILMS, 2006, 495 (1-2) :321-326
[8]   Label-free voltammetric immunosensor using a nanoporous membrane based platform [J].
de la Escosura-Muniz, Alfredo ;
Merkoci, Arben .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (06) :859-863
[9]   Room temperature ammonia and humidity sensing using highly ordered nanoporous alumina films [J].
Dickey, EC ;
Varghese, OK ;
Ong, KG ;
Gong, DW ;
Paulose, M ;
Grimes, CA .
SENSORS, 2002, 2 (03) :91-110
[10]   Nanoholes As Nanochannels: Flow-through Plasmonic Sensing [J].
Eftekhari, Fatemeh ;
Escobedo, Carlos ;
Ferreira, Jacqueline ;
Duan, Xiaobo ;
Girotto, Emerson M. ;
Brolo, Alexandre G. ;
Gordon, Reuven ;
Sinton, David .
ANALYTICAL CHEMISTRY, 2009, 81 (11) :4308-4311