Integrability and exact spectrum of a pairing model for nucleons

被引:32
作者
Links, J [1 ]
Zhou, HQ [1 ]
Gould, MD [1 ]
McKenzie, RH [1 ]
机构
[1] Univ Queensland, Ctr Math Phys, Brisbane, Qld 4072, Australia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 30期
关键词
D O I
10.1088/0305-4470/35/30/317
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A pairing model for nucleons, introduced by Richardson in 1966, which describes proton-neutron pairing as well as proton-proton and neutron-neutron pairing, is re-examined in the context of the quantum inverse scattering method. Specifically, this shows that the model is integrable by enabling the explicit construction of the conserved operators. We determine the eigenvalues of these operators in terms of the Bethe ansatz, which in turn leads to an expression for the energy eigenvalues of the Hamiltonian.
引用
收藏
页码:6459 / 6469
页数:11
相关论文
共 33 条
[1]   Exact correlation functions of the BCS model in the canonical ensemble [J].
Amico, L ;
Osterloh, A .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4
[3]  
Barut A., 1977, THEORY GROUP REPRESE
[4]   Spectroscopy of the superconducting gap in individual nanometer-scale aluminum particles [J].
Black, CT ;
Ralph, DC ;
Tinkham, M .
PHYSICAL REVIEW LETTERS, 1996, 76 (04) :688-691
[5]   Fixed-N superconductivity: The crossover from the bulk to the few-electron limit [J].
Braun, F ;
von Delft, J .
PHYSICAL REVIEW LETTERS, 1998, 81 (21) :4712-4715
[6]   Integrability of the pairing Hamiltonian [J].
Cambiaggio, MC ;
Rivas, AMF ;
Saraceno, M .
NUCLEAR PHYSICS A, 1997, 624 (02) :157-167
[7]   YANG-BAXTERIZATION OF BRAID GROUP-REPRESENTATIONS [J].
CHENG, Y ;
GE, ML ;
XUE, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (01) :195-208
[8]   Odd-even staggering of binding energies as a consequence of pairing and mean-field effects [J].
Dobaczewski, J ;
Magierski, P ;
Nazarewicz, W ;
Satula, W ;
Szymanski, Z .
PHYSICAL REVIEW C, 2001, 63 (02) :12
[9]   Density matrix renormalization group study of ultrasmall superconducting grains [J].
Dukelsky, J ;
Sierra, G .
PHYSICAL REVIEW LETTERS, 1999, 83 (01) :172-175
[10]   COMPLETE SOLUTION OF THE ONE-DIMENSIONAL HUBBARD-MODEL [J].
ESSLER, FHL ;
KOREPIN, VE ;
SCHOUTENS, K .
PHYSICAL REVIEW LETTERS, 1991, 67 (27) :3848-3851