Features of the extension of a statistical measure of complexity to continuous systems -: art. no. 011102

被引:231
作者
Catalán, RG
Garay, J
López-Ruiz, R
机构
[1] Univ Publ Navarra, Dept Matemat & Informat, Pamplona 31008, Spain
[2] Univ Zaragoza, Fac Ciencias, Dept Matemat, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, Fac Ciencias, DIIS, Area Ciencias Computac, E-50009 Zaragoza, Spain
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 01期
关键词
D O I
10.1103/PhysRevE.66.011102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss some aspects of the extension to continuous systems of a statistical measure of complexity introduced by Lopez-Ruiz, Mancini, and Calbet [Phys. Lett. A 209, 321 (1995)]. In general, the extension of a magnitude from the discrete to the continuous case is not a trivial process and requires some kind of choice. In the present study, several possibilities appear available. One of them is examined in detail. Some interesting properties desirable for any magnitude of complexity are discovered on this particular extension.
引用
收藏
页数:6
相关论文
共 20 条
[1]   Physical complexity of symbolic sequences [J].
Adami, C ;
Cerf, NJ .
PHYSICA D, 2000, 137 (1-2) :62-69
[2]   Some features of the Lopez-Ruiz-Mancini-Calbet (LMC) statistical measure of complexity [J].
Anteneodo, C ;
Plastino, AR .
PHYSICS LETTERS A, 1996, 223 (05) :348-354
[3]   Tendency towards maximum complexity in a nonequilibrium isolated system -: art. no. 066116 [J].
Calbet, X ;
López-Ruiz, R .
PHYSICAL REVIEW E, 2001, 63 (06)
[4]   ON LENGTH OF PROGRAMS FOR COMPUTING FINITE BINARY SEQUENCES [J].
CHAITIN, GJ .
JOURNAL OF THE ACM, 1966, 13 (04) :547-+
[5]   INFERRING STATISTICAL COMPLEXITY [J].
CRUTCHFIELD, JP ;
YOUNG, K .
PHYSICAL REVIEW LETTERS, 1989, 63 (02) :105-108
[6]   Measures of statistical complexity: Why? [J].
Feldman, DP ;
Crutchfield, JP .
PHYSICS LETTERS A, 1998, 238 (4-5) :244-252
[7]  
GOUZHANG F, 1998, J HYDR ENG CHIN HYDR, V11
[8]   TOWARD A QUANTITATIVE THEORY OF SELF-GENERATED COMPLEXITY [J].
GRASSBERGER, P .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1986, 25 (09) :907-938
[9]   COMPLEXITY AND ADAPTATION [J].
HUBERMAN, BA ;
HOGG, T .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 22 (1-3) :376-384
[10]  
KHINCHIN AI, 1957, MATH FDN INFORMATION