Enhanced electrochemical lithium storage activity of LiCrO2 by size effect

被引:38
作者
Feng, G. X. [1 ]
Li, L. F. [1 ]
Liu, J. Y. [1 ]
Liu, N. [1 ]
Li, H. [1 ]
Yang, X. Q. [2 ]
Huang, X. J. [1 ]
Chen, L. Q. [1 ]
Nam, K. W. [2 ]
Yoon, W. S. [2 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[2] Brookhaven Natl Lab, Upton, NY 11973 USA
关键词
OXIDE CATHODE MATERIALS; X-RAY-ABSORPTION; ION BATTERIES; CHROMIUM-OXIDE; LOCAL-STRUCTURE; MANGANESE; LICOO2; CELLS; DIFFRACTION; BEHAVIOR;
D O I
10.1039/b817624h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cr8O21 was chemically lithiated using a lithium-biphenyl-dimethoxyethane solution. Lithiated Cr8O21 shows a structure in which as-formed LiCrO2 units are sandwiched between Cr2O3 superlattice layers. Chemically lithiated Cr8O21 shows a delithiation capacity of 200 mAh g(-1). It means that LiCrO2 units in lithiated Cr8O21 are electrochemically active. This finding is opposite to previous reports that LiCrO2 materials have very poor Li-storage capacities. Our new result implies that LiCrO2 with extremely small domain size could show enhanced reactivity. This proposal is proved unambiguously by the fact that LiCrO2 powder materials with smaller grain size (<20 nm) show much higher capacities than LiCrO2 materials with larger grain size (>50 nm). In addition, it is found that the cation mixing is more significantly in LiCrO2 materials with smaller grain size, which seems a key factor for the storage and transport of lithium in layered Cr-based materials. The cation mixing may also explain the result that the lattice parameters of LiCrO2 do not change significantly upon lithium extraction and insertion, investigated by in situ and ex situ XRD techniques.
引用
收藏
页码:2993 / 2998
页数:6
相关论文
共 35 条
[1]   Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material [J].
Ammundsen, B ;
Paulsen, J ;
Davidson, I ;
Liu, RS ;
Shen, CH ;
Chen, JM ;
Jang, LY ;
Lee, JF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (04) :A431-A436
[2]  
Ammundsen B, 2001, ADV MATER, V13, P943, DOI 10.1002/1521-4095(200107)13:12/13<943::AID-ADMA943>3.0.CO
[3]  
2-J
[4]  
Armand M.B., 1973, FAST ION TRANS SOLID, P665
[5]  
Arora P, 1998, ELECTROCHEM SOLID ST, V1, P249, DOI 10.1149/1.1390702
[6]   In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries [J].
Balasubramanian, M ;
Sun, X ;
Yang, XQ ;
McBreen, J .
JOURNAL OF POWER SOURCES, 2001, 92 (1-2) :1-8
[7]   In situ X-ray absorption study of a layered manganese-chromium oxide-based cathode material [J].
Balasubramanian, M ;
McBreen, J ;
Davidson, IJ ;
Whitfield, PS ;
Kargina, I .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (02) :A176-A184
[8]   An overview of the Li(Ni,M)O2 systems:: syntheses, structures and properties [J].
Delmas, C ;
Ménétrier, M ;
Croguennec, L ;
Saadoune, I ;
Rougier, A ;
Pouillerie, C ;
Prado, G ;
Grüne, M ;
Fournès, L .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :243-253
[9]   On the behavior of the LixNiO2 system:: an electrochemical and structural overview [J].
Delmas, C ;
Peres, JP ;
Rougier, A ;
Demourgues, A ;
Weill, F ;
Chadwick, A ;
Broussely, M ;
Perton, F ;
Biensan, P ;
Willmann, P .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :120-125
[10]   A SURVEY OF 1ST-ROW TERNARY OXIDES LISCO2, LICUO2 [J].
HEWSTON, TA ;
CHAMBERLAND, BL .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1987, 48 (02) :97-108