Sequence and structural conservation in RNA ribose zippers

被引:77
作者
Tamura, M [1 ]
Holbrook, SR [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Dept Biol Struct, Phys Biosci Div, Melvin Calvin Lab 132, Berkeley, CA 94720 USA
关键词
ribosomal RNA; RNA ribose zipper; RNA tertiary interaction; protein-RNA interaction; A-minor motif;
D O I
10.1016/S0022-2836(02)00515-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The "ribose zipper", an important element of RNA tertiary structure, is characterized by consecutive hydrogen-bonding interactions between ribose 2-hydroxyls from different regions of an RNA chain or between RNA chains. These tertiary contacts have previously been observed to also involve base-backbone and base-base interactions (A-minor type). We searched for ribose zipper tertiary interactions in the crystal structures of the large ribosomal subunit RNAs of Haloarcula marismortui and Deinococcus radiodurans, and the small ribosomal subunit RNA of Thermus thermophilus and identified a total of 97 ribose zippers. Of these, 20 were found in T thermophilus 16 S rRNA, 44 in H. marismortui 23 S rRNA (plus 2 bridging 5 S and 23 S rRNAs) and 30 in D. radiodurans 23 S rRNA (plus 1 bridging 5 S and 23 S rRNAs). These were analyzed in terms of sequence conservation, structural conservation and stability location in secondary structure, and phylogenetic conservation. Eleven types of ribose zippers were defined based on ribose-base interactions. Of these 11, seven were observed in the ribosomal RNAs. The most common of these is the canonical ribose zipper, originally observed in the P4-P6 group I intron fragment. All ribose zippers were formed by antiparallel chain interactions and only a single example extended beyond two residues, forming an overlapping ribose zipper of three consecutive residues near the small subunit A-site. Almost all ribose zippers link stem (Watson-Crick duplex) or stem-like (base-paired), with loop (external, internal, or junction) chain segments. About two-thirds of the observed ribose zippers interact with ribosomal proteins. Most of these ribosomal proteins bridge the ribose zipper chain segments with basic amino acid residues hydrogen bonding to the RNA backbone. Proteins involved in crucial ribosome function and in early stages of ribosomal assembly also stabilize ribose zipper interactions. All ribose zippers show strong sequence conservation both within these three ribosomal RNA structures and in a large database of aligned prokaryotic sequences. The physical basis of the sequence conservation is stacked base triples formed between consecutive base-pairs on the stem or stem-like segment with bases (often adenines) from the loop-side segment. These triples have previously been characterized as Type I and Type II A-minor motifs and are stabilized by base-base and base-ribose hydrogen bonds. The sequence and structure conservation of ribose zippers can be directly used in tertiary structure prediction and may have applications in molecular modeling and design. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:455 / 474
页数:20
相关论文
共 28 条
[1]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[2]  
Batey RT, 1999, ANGEW CHEM INT EDIT, V38, P2327
[3]   Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus:: Structure of the proteins and their interactions with 16 S RNA [J].
Brodersen, DE ;
Clemons, WM ;
Carter, AP ;
Wimberly, BT ;
Ramakrishnan, V .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 316 (03) :725-768
[4]  
CANNONE JJ, 2002, BIOMED CENTRAL BIOIN, V3
[5]   Crystal structure of a group I ribozyme domain: Principles of RNA packing [J].
Cate, JH ;
Gooding, AR ;
Podell, E ;
Zhou, KH ;
Golden, BL ;
Kundrot, CE ;
Cech, TR ;
Doudna, JA .
SCIENCE, 1996, 273 (5282) :1678-1685
[6]   CHARACTERIZATION OF A KISSING HAIRPIN COMPLEX DERIVED FROM THE HUMAN-IMMUNODEFICIENCY-VIRUS GENOME [J].
CHANG, KY ;
TINOCO, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (18) :8705-8709
[7]   Crystal structure of a conserved ribosomal protein-RNA complex [J].
Conn, GL ;
Draper, DE ;
Lattman, EE ;
Gittis, AG .
SCIENCE, 1999, 284 (5417) :1171-1174
[8]  
DeLano W., 2004, The Pymol Molecular Graphics System Version 1.0
[9]   A universal mode of helix packing in RNA [J].
Doherty, EA ;
Batey, RT ;
Masquida, B ;
Doudna, JA .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (04) :339-343
[10]   Stepping through an RNA structure: A novel approach to conformational analysis [J].
Duarte, CM ;
Pyle, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 284 (05) :1465-1478