Estimation of cosmological parameters using adaptive importance sampling

被引:60
作者
Wraith, Darren [1 ,2 ,3 ]
Kilbinger, Martin [2 ,3 ]
Benabed, Karim [2 ,3 ]
Cappe, Olivier [4 ,5 ]
Cardoso, Jean-Francois [2 ,3 ,4 ,5 ]
Fort, Gersende [4 ,5 ]
Prunet, Simon [2 ,3 ]
Robert, Christian P. [1 ]
机构
[1] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
[2] CNRS, Inst Astrophys, UMR 7095, F-75014 Paris, France
[3] UPMC, F-75014 Paris, France
[4] TELECOM ParisTech, LTCI, F-75013 Paris, France
[5] CNRS, F-75013 Paris, France
来源
PHYSICAL REVIEW D | 2009年 / 80卷 / 02期
关键词
POWER SPECTRUM; LEGACY SURVEY; COSMIC SHEAR; MICROWAVE; LIKELIHOOD; WIDE;
D O I
10.1103/PhysRevD.80.023507
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a Bayesian sampling algorithm called adaptive importance sampling or population Monte Carlo (PMC), whose computational workload is easily parallelizable and thus has the potential to considerably reduce the wall-clock time required for sampling, along with providing other benefits. To assess the performance of the approach for cosmological problems, we use simulated and actual data consisting of CMB anisotropies, supernovae of type Ia, and weak cosmological lensing, and provide a comparison of results to those obtained using state-of-the-art Markov chain Monte Carlo (MCMC). For both types of data sets, we find comparable parameter estimates for PMC and MCMC, with the advantage of a significantly lower wall-clock time for PMC. In the case of WMAP5 data, for example, the wall-clock time scale reduces from days for MCMC to hours using PMC on a cluster of processors. Other benefits of the PMC approach, along with potential difficulties in using the approach, are analyzed and discussed.
引用
收藏
页数:18
相关论文
共 55 条
[1]  
[Anonymous], 2004, Springer Texts in Statistics
[2]  
[Anonymous], 2005, HDB STAT
[3]  
[Anonymous], 1991, ELEMENTS INFORM THEO
[4]  
[Anonymous], 2001, The Bayesian choice
[5]   The Supernova Legacy Survey:: measurement of ΩM, ΩΛ and w from the first year data set [J].
Astier, P ;
Guy, J ;
Regnault, N ;
Pain, R ;
Aubourg, E ;
Balam, D ;
Basa, S ;
Carlberg, RG ;
Fabbro, S ;
Fouchez, D ;
Hook, IM ;
Howell, DA ;
Lafoux, H ;
Neill, JD ;
Palanque-Delabrouille, N ;
Perrett, K ;
Pritchet, CJ ;
Rich, J ;
Sullivan, M ;
Taillet, R ;
Aldering, G ;
Antilogus, P ;
Arsenijevic, V ;
Balland, C ;
Baumont, S ;
Bronder, J ;
Courtois, H ;
Ellis, RS ;
Filiol, M ;
Gonçalves, AC ;
Goobar, A ;
Guide, D ;
Hardin, D ;
Lusset, V ;
Lidman, C ;
McMahon, R ;
Mouchet, M ;
Mourao, A ;
Perlmutter, S ;
Ripoche, P ;
Tao, C ;
Walton, N .
ASTRONOMY & ASTROPHYSICS, 2006, 447 (01) :31-U31
[6]  
ATCHADE Y, ARXIV08072952
[7]   Fast cosmological parameter estimation using neural networks [J].
Auld, T. ;
Bridges, M. ;
Hobson, M. P. ;
Gull, S. F. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 376 (01) :L11-L15
[8]   Population Monte Carlo [J].
Cappé, O ;
Guillin, A ;
Marin, JM ;
Robert, CP .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (04) :907-929
[9]  
CAPPE O, ARXIV07104242
[10]  
CHOPIN N, ARXIV08013887