FeMo cofactor of nitrogenase: energetics and local interactions in the protein environment

被引:37
作者
Lovell, T [1 ]
Li, J [1 ]
Case, DA [1 ]
Noodleman, L [1 ]
机构
[1] Scripps Res Inst, Dept Mol Biol TPC15, La Jolla, CA 92037 USA
来源
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY | 2002年 / 7卷 / 7-8期
关键词
FeMo cofactor; nitrogenase; density functional calculations; continuum electrostatics; Azotobacter vinelandii;
D O I
10.1007/s00775-002-0348-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A combined broken-symmetry density functional and continuum electrostatics approach has been applied to the iron-molybdenum center (FeMoco) of nitrogenase to evaluate the energetic effects of the local amino acid environment for several spin alignments of FeMoco. The protein environment preferentially stabilizes certain spin coupling patterns. The lowest energy spin alignment pattern in the protein displays calculated properties that match the experimental data better than any of the alternative possibilities. The total interaction energy of the protein with FeMoco has been evaluated and the contribution of each amino acid residue has been broken down into sidechain and backbone components. Arginine, lysine, aspartate and glutamate sidechains exert the largest electrostatic influence on FeMoco; specific residues are highlighted and their interaction with FeMoco discussed in the context of the available X-ray data from Azotobacter vinelandii (Av). Observed data for the M-N (resting state)-4M(OX)(one-electron oxidized state) and M-N-->M-R (one-electron reduced state) or M-I(alternative one-electron reduced state) redox couples are compared with those calculated for Av. The calculated redox potentials are fairly insensitive to the spin state of the oxidized or reduced states and the predicted qualitative trend of a more negative redox potential for the more reduced M-N-->M-R or M-I couple is in accord with the available redox data. These calculations represent a first step towards the development of a microscopic model of electron and proton transfer events at the nitrogenase active site.
引用
收藏
页码:735 / 749
页数:15
相关论文
共 65 条
[1]  
*ADF, 1997, 230 ADF FREE U DEP T
[2]  
[Anonymous], 1986, NUMERICAL RECIPES C
[3]   A quantum chemical view of density functional theory [J].
Baerends, EJ ;
Gritsenko, OV .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (30) :5383-5403
[4]   ELECTROSTATIC CALCULATIONS OF THE PKA VALUES OF IONIZABLE GROUPS IN BACTERIORHODOPSIN [J].
BASHFORD, D ;
GERWERT, K .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (02) :473-486
[5]   PKAS OF IONIZABLE GROUPS IN PROTEINS - ATOMIC DETAIL FROM A CONTINUUM ELECTROSTATIC MODEL [J].
BASHFORD, D ;
KARPLUS, M .
BIOCHEMISTRY, 1990, 29 (44) :10219-10225
[6]  
Bashford D, 1997, LECT NOTES COMPUTER, P233, DOI [DOI 10.1007/3-540-63827-X_66, 10.1007/3-540-63827-X]
[7]   THE UNUSUAL METAL-CLUSTERS OF NITROGENASE - STRUCTURAL FEATURES REVEALED BY X-RAY ANOMALOUS DIFFRACTION STUDIES OF THE MOFE PROTEIN FROM CLOSTRIDIUM-PASTEURIANUM [J].
BOLIN, JT ;
RONCO, AE ;
MORGAN, TV ;
MORTENSON, LE ;
XUONG, NH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (03) :1078-1082
[8]   DETERMINING ATOM-CENTERED MONOPOLES FROM MOLECULAR ELECTROSTATIC POTENTIALS - THE NEED FOR HIGH SAMPLING DENSITY IN FORMAMIDE CONFORMATIONAL-ANALYSIS [J].
BRENEMAN, CM ;
WIBERG, KB .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (03) :361-373
[9]   Mechanism of molybdenum nitrogenase [J].
Burgess, BK ;
Lowe, DJ .
CHEMICAL REVIEWS, 1996, 96 (07) :2983-3011
[10]   THE NITROGENASE FEMO-COFACTOR AND P-CLUSTER PAIR - 2.2-ANGSTROM RESOLUTION STRUCTURES [J].
CHAN, MK ;
KIM, JS ;
REES, DC .
SCIENCE, 1993, 260 (5109) :792-794