External validation of multivariable prediction models: a systematic review of methodological conduct and reporting

被引:495
作者
Collins, Gary S. [1 ]
de Groot, Joris A. [2 ]
Dutton, Susan [1 ]
Omar, Omar [1 ]
Shanyinde, Milensu [1 ]
Tajar, Abdelouahid [1 ]
Voysey, Merryn [1 ]
Wharton, Rose [1 ]
Yu, Ly-Mee [1 ]
Moons, Karel G. [2 ]
Altman, Douglas G. [1 ]
机构
[1] Univ Oxford, Botnar Res Ctr, Ctr Stat Med, Oxford OX3 7LD, England
[2] UMC Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
来源
BMC MEDICAL RESEARCH METHODOLOGY | 2014年 / 14卷
基金
英国医学研究理事会;
关键词
INDIVIDUAL PARTICIPANT DATA; PROSTATE-SPECIFIC ANTIGEN; CHRONIC KIDNEY-DISEASE; PROGNOSTIC MODELS; INTERNAL VALIDATION; TERM MORTALITY; MISSING DATA; RISK; CANCER; PERFORMANCE;
D O I
10.1186/1471-2288-14-40
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Before considering whether to use a multivariable (diagnostic or prognostic) prediction model, it is essential that its performance be evaluated in data that were not used to develop the model (referred to as external validation). We critically appraised the methodological conduct and reporting of external validation studies of multivariable prediction models. Methods: We conducted a systematic review of articles describing some form of external validation of one or more multivariable prediction models indexed in PubMed core clinical journals published in 2010. Study data were extracted in duplicate on design, sample size, handling of missing data, reference to the original study developing the prediction models and predictive performance measures. Results: 11,826 articles were identified and 78 were included for full review, which described the evaluation of 120 prediction models. in participant data that were not used to develop the model. Thirty-three articles described both the development of a prediction model and an evaluation of its performance on a separate dataset, and 45 articles described only the evaluation of an existing published prediction model on another dataset. Fifty-seven percent of the prediction models were presented and evaluated as simplified scoring systems. Sixteen percent of articles failed to report the number of outcome events in the validation datasets. Fifty-four percent of studies made no explicit mention of missing data. Sixty-seven percent did not report evaluating model calibration whilst most studies evaluated model discrimination. It was often unclear whether the reported performance measures were for the full regression model or for the simplified models. Conclusions: The vast majority of studies describing some form of external validation of a multivariable prediction model were poorly reported with key details frequently not presented. The validation studies were characterised by poor design, inappropriate handling and acknowledgement of missing data and one of the most key performance measures of prediction models i.e. calibration often omitted from the publication. It may therefore not be surprising that an overwhelming majority of developed prediction models are not used in practice, when there is a dearth of well-conducted and clearly reported (external validation) studies describing their performance on independent participant data.
引用
收藏
页数:11
相关论文
共 62 条
[1]  
Altman DG, 2000, STAT MED, V19, P453, DOI 10.1002/(SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.3.CO
[2]  
2-X
[3]   Prognosis and prognostic research: validating a prognostic model [J].
Altman, Douglas G. ;
Vergouwe, Yvonne ;
Royston, Patrick ;
Moons, Karel G. M. .
BMJ-BRITISH MEDICAL JOURNAL, 2009, 338 :1432-1435
[4]  
[Anonymous], 2010, CLIN GUID PREV TREAT
[5]   Using relative utility curves to evaluate risk prediction [J].
Baker, Stuart G. ;
Cook, Nancy R. ;
Vickers, Andrew ;
Kramer, Barnett S. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2009, 172 :729-748
[6]   Development and Validation of a Patient Self-assessment Score for Diabetes Risk [J].
Bang, Heejung ;
Edwards, Alison M. ;
Bomback, Andrew S. ;
Ballantyne, Christie M. ;
Brillon, David ;
Callahan, Mark A. ;
Teutsch, Steven M. ;
Mushlin, Alvin I. ;
Kern, Lisa M. .
ANNALS OF INTERNAL MEDICINE, 2009, 151 (11) :775-W255
[7]   External validation is necessary in, prediction research: A clinical example [J].
Bleeker, SE ;
Moll, HA ;
Steyerberg, EW ;
Donders, ART ;
Derksen-Lubsen, G ;
Grobbee, DE ;
Moons, KGM .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2003, 56 (09) :826-832
[8]   Reporting and Interpretation of Randomized Controlled Trials With Statistically Nonsignificant Results for Primary Outcomes [J].
Boutron, Isabelle ;
Dutton, Susan ;
Ravaud, Philippe ;
Altman, Douglas G. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2010, 303 (20) :2058-2064
[9]   Reporting and Methods in Clinical Prediction Research: A Systematic Review [J].
Bouwmeester, Walter ;
Zuithoff, Nicolaas P. A. ;
Mallett, Susan ;
Geerlings, Mirjam I. ;
Vergouwe, Yvonne ;
Steyerberg, Ewout W. ;
Altman, Douglas G. ;
Moons, Karel G. M. .
PLOS MEDICINE, 2012, 9 (05)
[10]   Missing covariate data within cancer prognostic studies: a review of current reporting and proposed guidelines [J].
Burton, A ;
Altman, DG .
BRITISH JOURNAL OF CANCER, 2004, 91 (01) :4-8