High Order Extensions of Roe Schemes for Two-Dimensional Nonconservative Hyperbolic Systems

被引:76
作者
Castro, M. J. [1 ]
Fernandez-Nieto, E. D. [2 ]
Ferreiro, A. M. [3 ]
Garcia-Rodriguez, J. A. [3 ]
Pares, C. [1 ]
机构
[1] Univ Malaga, Dpto Anal Matemat, Malaga 29080, Spain
[2] Univ Seville, Dpto Matemat Aplicada 1, E-41012 Seville, Spain
[3] Univ A Coruna, Dpto Matemat, La Coruna 15071, Spain
关键词
Generalized Roe schemes; 2d Nonconservative hyperbolic systems; Nonconservative products; Finite volume schemes; Conservation laws; Source terms; Shallow water systems; Two-layer problems; Geophysical flows; FINITE-VOLUME SCHEMES; SHALLOW-WATER SYSTEMS; WELL-BALANCED SCHEME; CONSERVATION-LAWS; SOURCE TERMS; EQUATIONS; PRODUCTS; RECONSTRUCTION; PROPERTY; FLUXES;
D O I
10.1007/s10915-008-9250-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the development of well-balanced high order Roe methods for two-dimensional nonconservative hyperbolic systems. In particular, we are interested in extending the methods introduced in (Castro et al., Math. Comput. 75:1103-1134, 2006) to the two-dimensional case. We also investigate the well-balance properties and the consistency of the resulting schemes. We focus in applications to one and two layer shallow water systems.
引用
收藏
页码:67 / 114
页数:48
相关论文
共 32 条
  • [1] [Anonymous], 1967, Mat. Sb, V73, P255
  • [2] [Anonymous], 1989, 593 I MATH ITS APPL
  • [3] MAXIMAL 2-LAYER EXCHANGE THROUGH A CONTRACTION WITH BAROTROPIC NET FLOW
    ARMI, L
    FARMER, DM
    [J]. JOURNAL OF FLUID MECHANICS, 1986, 164 : 27 - 51
  • [4] UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS
    BERMUDEZ, A
    VAZQUEZ, E
    [J]. COMPUTERS & FLUIDS, 1994, 23 (08) : 1049 - 1071
  • [5] High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products.: Applications to shallow-water systems
    Castro, Manuel
    Gallardo, Jose E. M.
    Pares, Carlos
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (255) : 1103 - 1134
  • [6] Why many theories of shock waves are necessary:: Convergence error in formally path-consistent schemes
    Castro, Manuel J.
    LeFloch, Philippe G.
    Munoz-Ruiz, Maria Luz
    Pares, Carlos
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (17) : 8107 - 8129
  • [7] The numerical treatment of wet/dry fronts in shallow flows:: Application to one-layer and two-layer systems
    Castro, MJ
    Ferreiro, AMF
    García-Rodríguez, JA
    González-Vida, JM
    Macías, J
    Parés, C
    Vázquez-Cendón, ME
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (3-4) : 419 - 439
  • [8] CASTRO MJ, 2008, COEFFICIENT SP UNPUB
  • [9] DalMaso G, 1995, J MATH PURE APPL, V74, P483
  • [10] Godlewski E., 1996, APPL MATH SCI, V118