SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast

被引:534
作者
StrahlBolsinger, S
Hecht, A
Luo, KH
Grunstein, M
机构
[1] UNIV CALIF LOS ANGELES,DEPT BIOL CHEM,LOS ANGELES,CA 90095
[2] UNIV CALIF LOS ANGELES,SCH MED,LOS ANGELES,CA 90095
[3] UNIV CALIF LOS ANGELES,INST MOL BIOL,LOS ANGELES,CA 90095
关键词
heterochromatin; telomeres; silencing; SIR proteins RAP1; POSITION-EFFECT VARIEGATION; SACCHAROMYCES-CEREVISIAE; BINDING-PROTEIN; RAP1; PURIFICATION; REPRESSION; COMPLEX; DOMAINS; TRANSCRIPTION; MODIFIERS;
D O I
10.1101/gad.11.1.83
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Yeast core telomeric heterochromatin can silence adjacent genes and requires RAP1, SIR2, SIR3, and SIR4 and histones H3 and H4 for this telomere position effect. SIR3 overproduction can extend the silenced domain. We examine here the nature of these multiprotein complexes. SIR2 and SIR4 were immunoprecipitated from whole-cell extracts. In addition, using formaldehyde cross-linking we have mapped SIR2, SIR4, and RAP1 along telomeric chromatin before and after SIR3 overexpression. Our data demonstrate that SIR2 and SIR4 interact in a protein complex and that SIR2, SIR3, SIR4 and RAP1 map to the same sites along telomeric heterochromatin in wild-type cells. However, when overexpressed, SIR3 spreads along the chromosome and its interactions are dominant to those of SIR4 and especially SIR2, whose detection is decreased in extended heterochromatin. RAP1 binding at the core region is unaffected by SIR3 overproduction and RAP1 shows no evidence of spreading. Thus, we propose that the structure of core telomeric heterochromatin differs from that extended by SIR3.
引用
收藏
页码:83 / 93
页数:11
相关论文
共 45 条
  • [1] POSITION EFFECT VARIEGATION AT FISSION YEAST CENTROMERES
    ALLSHIRE, RC
    JAVERZAT, JP
    REDHEAD, NJ
    CRANSTON, G
    [J]. CELL, 1994, 76 (01) : 157 - 169
  • [2] [Anonymous], 1988, Antibodies: a laboratory manual
  • [3] MODIFIERS OF POSITION EFFECT ARE SHARED BETWEEN TELOMERIC AND SILENT MATING-TYPE LOCI IN SACCHAROMYCES-CEREVISIAE
    APARICIO, OM
    BILLINGTON, BL
    GOTTSCHLING, DE
    [J]. CELL, 1991, 66 (06) : 1279 - 1287
  • [4] THE SIR2 GENE FAMILY, CONSERVED FROM BACTERIA TO HUMANS, FUNCTIONS IN SILENCING, CELL-CYCLE PROGRESSION, AND CHROMOSOME STABILITY
    BRACHMANN, CB
    SHERMAN, JM
    DEVINE, SE
    CAMERON, EE
    PILLUS, L
    BOEKE, JD
    [J]. GENES & DEVELOPMENT, 1995, 9 (23) : 2888 - 2902
  • [5] TRANSCRIPTIONAL SILENCING IN YEAST IS ASSOCIATED WITH REDUCED NUCLEOSOME ACETYLATION
    BRAUNSTEIN, M
    ROSE, AB
    HOLMES, SG
    ALLIS, CD
    BROACH, JR
    [J]. GENES & DEVELOPMENT, 1993, 7 (04) : 592 - 604
  • [6] 2 DNA-BINDING FACTORS RECOGNIZE SPECIFIC SEQUENCES AT SILENCERS, UPSTREAM ACTIVATING SEQUENCES, AUTONOMOUSLY REPLICATING SEQUENCES, AND TELOMERES IN SACCHAROMYCES-CEREVISIAE
    BUCHMAN, AR
    KIMMERLY, WJ
    RINE, J
    KORNBERG, RD
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (01) : 210 - 225
  • [7] ACTION OF A RAP1 CARBOXY-TERMINAL SILENCING DOMAIN REVEALS AN UNDERLYING COMPETITION BETWEEN HMR AND TELOMERES IN YEAST
    BUCK, SW
    SHORE, D
    [J]. GENES & DEVELOPMENT, 1995, 9 (03) : 370 - 384
  • [8] THE 2-HYBRID SYSTEM - A METHOD TO IDENTIFY AND CLONE GENES FOR PROTEINS THAT INTERACT WITH A PROTEIN OF INTEREST
    CHIEN, CT
    BARTEL, PL
    STERNGLANZ, R
    FIELDS, S
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (21) : 9578 - 9582
  • [9] MULTIFUNCTIONAL YEAST HIGH-COPY-NUMBER SHUTTLE VECTORS
    CHRISTIANSON, TW
    SIKORSKI, RS
    DANTE, M
    SHERO, JH
    HIETER, P
    [J]. GENE, 1992, 110 (01) : 119 - 122
  • [10] THE CARBOXY TERMINI OF SIR4 AND RAP1 AFFECT SIR3 LOCALIZATION - EVIDENCE FOR A MULTICOMPONENT COMPLEX REQUIRED FOR YEAST TELOMERIC SILENCING
    COCKELL, M
    PALLADINO, F
    LAROCHE, T
    KYRION, G
    LIU, C
    LUSTIG, AJ
    GASSER, SM
    [J]. JOURNAL OF CELL BIOLOGY, 1995, 129 (04) : 909 - 924