The use of selected pseudo-invariant targets for the application of atmospheric correction in multi-temporal studies using satellite remotely sensed imagery

被引:72
作者
Hadjimitsis, D. G. [1 ]
Clayton, C. R. I. [2 ]
Retalis, A. [3 ]
机构
[1] Cyprus Univ Technol, Dept Civil Engn & Geomat, Fac Engn & Technol, Lemesos, Cyprus
[2] Univ Southampton, Sch Civil & Environm Engn, Southampton SO17 1BJ, Hants, England
[3] Natl Observ Athens, Inst Environm Res & Sustainable Dev, GR-15236 Athens, Greece
来源
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION | 2009年 / 11卷 / 03期
关键词
Atmospheric correction; Pseudo-invariant targets; Empirical line method; Dark target; Light target; Reflectance; Remote sensing; THEMATIC MAPPER DATA; RADIOMETRIC NORMALIZATION; QUALITY-CONTROL; LANDSAT DATA; REFLECTANCE; RESERVOIRS;
D O I
10.1016/j.jag.2009.01.005
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Because atmospheric effects can have a significant impact on the data obtained from multi-spectral satellite remote sensing, it is frequently necessary to make corrections before any other image processing can be started. This paper describes a robust and relatively simple atmospheric correction method that uses pseudo-invariant targets (PITs) in conjunction with the empirical line method. The method is based on the selection of a number of suitable generic PlTs, on the basis that they are large, distinctive in shape, and occur in many geographical areas. Whereas the multi-temporal normalization method corrects all images to a selected reference image, in this method images are simultaneously corrected using targets with a range of estimated surface reflectance values. The paper describes some applications of the method fora range of environmental studies involving water quality and air pollution monitoring, and mapping land-cover changes. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:192 / 200
页数:9
相关论文
共 51 条
[1]   Determination of chlorophyll and dissolved organic carbon from reflectance data for Colorado reservoirs [J].
Arenz, RF ;
Lewis, WM ;
Saunders, JF .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1996, 17 (08) :1547-1566
[2]  
BERGER HF, 1989, ESA, P293
[3]   Automatic radiometric normalization of multitemporal satellite imagery [J].
Canty, MJ ;
Nielsen, AA ;
Schmidt, M .
REMOTE SENSING OF ENVIRONMENT, 2004, 91 (3-4) :441-451
[4]  
CARTALIS C, 1996, INT J REMOTE SENS, V16, P1897
[5]   AN ALTERNATIVE SIMPLE APPROACH TO ESTIMATE ATMOSPHERIC CORRECTION IN MULTITEMPORAL STUDIES [J].
CASELLES, V ;
GARCIA, MJL .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1989, 10 (06) :1127-1134
[7]  
Cracknell A. P., 1993, INTRO REMOTE SENSING, P116
[8]   MODELING OF THE ATMOSPHERIC EFFECTS AND ITS APPLICATION TO THE REMOTE-SENSING OF OCEAN COLOR [J].
DESCHAMPS, PY ;
HERMAN, M ;
TANRE, D .
APPLIED OPTICS, 1983, 22 (23) :3751-3758
[9]   Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection [J].
Du, Y ;
Teillet, PM ;
Cihlar, J .
REMOTE SENSING OF ENVIRONMENT, 2002, 82 (01) :123-134
[10]   Radiometric normalization, compositing, and quality control for satellite high resolution image mosaics over large areas [J].
Du, Y ;
Cihlar, J ;
Beaubien, J ;
Latifovic, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (03) :623-634