Potassium- and acetylcholine-induced vasorelaxation in mice lacking endothelial nitric oxide synthase

被引:67
作者
Ding, H
Kubes, P
Triggle, C [1 ]
机构
[1] Univ Calgary, Fac Med, Dept Pharmacol & Therapeut, Calgary, AB T2N 4N1, Canada
[2] Univ Calgary, Fac Med, Smooth Muscle Res Grp, Calgary, AB T2N 4N1, Canada
[3] Univ Calgary, Fac Med, Immunol Res Grp, Calgary, AB T2N 4N1, Canada
[4] Univ Calgary, Fac Med, Dept Physiol & Biophys, Calgary, AB T2N 4N1, Canada
关键词
endothelium-derived hyperpolarizing factor; inward rectifier potassium channel (K-IR) and Na+/K+ ATPase; eNOS knockout mice; saphenous and mesenteric arteries;
D O I
10.1038/sj.bjp.0703144
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
1 The contribution of an endothelium-derived hyperpolarizing factor (EDHF) was investigated in saphenous and mesenteric arteries from endothelial nitric oxide synthase (eNOS)(-/-) and (+/+) mice. 2 Acetylcholine-induced endothelium-dependent relaxation of saphenous arteries of eNOS(-/-) was resistant to N-omega-nitro-L-arginine (L-NNA) and indomethacin, as well as the guanylyl cyclase inhibitor. 1H-(1,2,4)oxadiazolo(4,3-a) quinoxalin-1-one(ODQ). 3 Potassium (K+) induced a dose-dependent vasorelaxation which was endothelium-independent and unaffected by either L-NNA or indomethacin in both saphenous and mesenteric arteries from eNOS(-/-) or (+/+) mice. 4 Thirty mu M barium (Ba2+) and 10 mu M ouabain partially blocked potassium-induced, but had no effect on acetylcholine-induced vasorelaxation in saphenous arteries. 5 Acetylcholine-induced relaxation was blocked by a combination of charybdotoxin (ChTX) and apamin which had no effect on K+-induced relaxation. however, iberiotoxin (IbTX) was ineffective against either acetylcholine- or K+-induced relaxation. 6 Thirty mu M Ba2+ partially blocked both K+- and acetylcholine-induced relaxation of mesenteric arteries, and K+. but not acetylcholine-induced relaxation was totally blocked by the combination of Ba2+ and ouabain. 7 These data indicate that acetylcholine-induced relaxation cannot be mimicked by elevating extracellular K+ in saphenous arteries from either eNOS(-/-) or (+/+) mice, but K+ may contribute to EDHF-mediated relaxation of mesenteric arteries.
引用
收藏
页码:1194 / 1200
页数:7
相关论文
共 25 条
[1]  
ADEAGBO AS, 1993, J CARDIOVASC PHARM, V21, P243
[2]   Effect of K+-channel blockers on ACh-induced hyperpolarization and relaxation in mesenteric arteries [J].
Chen, GF ;
Cheung, DW .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1997, 272 (05) :H2306-H2312
[3]  
COOK NS, 1990, POTASSIUM CHANNELS S, P181
[4]   Charybdotoxin and apamin block EDHF in rat mesenteric artery if selectively applied to the endothelium [J].
Doughty, JM ;
Plane, F ;
Langton, PD .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1999, 276 (03) :H1107-H1112
[5]   INWARD RECTIFICATION IN SUBMUCOSAL ARTERIOLES OF GUINEA-PIG ILEUM [J].
EDWARDS, FR ;
HIRST, GDS .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 404 :437-454
[6]   K+ is an endothelium-derived hyperpolarizing factor in rat arteries [J].
Edwards, G ;
Dora, KA ;
Gardener, MJ ;
Garland, CJ ;
Weston, AH .
NATURE, 1998, 396 (6708) :269-272
[7]   Endothelium-derived hyperpolarizing factor [J].
Feletou, M ;
Vanhoutte, PM .
CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 1996, 23 (12) :1082-1090
[8]   ENDOTHELIUM-DEPENDENT HYPERPOLARIZATION OF CANINE CORONARY SMOOTH-MUSCLE [J].
FELETOU, M ;
VANHOUTTE, PM .
BRITISH JOURNAL OF PHARMACOLOGY, 1988, 93 (03) :515-524
[9]   THE OBLIGATORY ROLE OF ENDOTHELIAL-CELLS IN THE RELAXATION OF ARTERIAL SMOOTH-MUSCLE BY ACETYLCHOLINE [J].
FURCHGOTT, RF ;
ZAWADZKI, JV .
NATURE, 1980, 288 (5789) :373-376
[10]   ENDOTHELIUM-DEPENDENT HYPERPOLARIZATION - A ROLE IN THE CONTROL OF VASCULAR TONE [J].
GARLAND, CJ ;
PLANE, F ;
KEMP, BK ;
COCKS, TM .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1995, 16 (01) :23-30