High-efficiency polymer solar cells with small photon energy loss

被引:366
作者
Kawashima, Kazuaki [1 ,2 ]
Tamai, Yasunari [3 ]
Ohkita, Hideo [3 ,4 ]
Osaka, Itaru [2 ,4 ]
Takimiya, Kazuo [1 ,2 ]
机构
[1] Hiroshima Univ, Grad Sch Engn, Dept Appl Chem, Hiroshima 7398527, Japan
[2] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
[3] Kyoto Univ, Grad Sch Engn, Dept Polymer Chem, Kyoto 6158510, Japan
[4] Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol PRESTO, Tokyo 1020075, Japan
基金
日本科学技术振兴机构;
关键词
OPEN-CIRCUIT VOLTAGE; POWER CONVERSION EFFICIENCY; CHARGE-TRANSFER STATES; QUANTUM EFFICIENCY; BLEND FILMS; MORPHOLOGY; RECOMBINATION; GENERATION; COPOLYMERS; DYNAMICS;
D O I
10.1038/ncomms10085
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A crucial issue facing polymer-based solar cells is how to manage the energetics of the polymer/ fullerene blends to maximize short-circuit current density and open-circuit voltage at the same time and thus the power conversion efficiency. Here we demonstrate that the use of a naphthobisoxadiazole-based polymer with a narrow bandgap of 1.52 eV leads to high open-circuit voltages of approximately 1V and high-power conversion efficiencies of similar to 9% in solar cells, resulting in photon energy loss as small as similar to 0.5 eV, which is much smaller than that of typical polymer systems (0.7-1.0 eV). This is ascribed to the high external quantum efficiency for the systems with a very small energy offset for charge separation. These unconventional features of the present polymer system will inspire the field of polymer-based solar cells towards further improvement of power conversion efficiencies with both high short-circuit current density and open-circuit voltage.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Processable Low-Bandgap Polymers for Photovoltaic Applications [J].
Boudreault, Pierre-Luc T. ;
Najari, Ahmed ;
Leclerc, Mario .
CHEMISTRY OF MATERIALS, 2011, 23 (03) :456-469
[2]  
Brabec C., 2008, ORGANIC PHOTOVOLTAIC
[3]   Mind the gap! [J].
Bredas, Jean-Luc .
MATERIALS HORIZONS, 2014, 1 (01) :17-19
[4]   Molecular Understanding of Organic Solar Cells: The Challenges [J].
Bredas, Jean-Luc ;
Norton, Joseph E. ;
Cornil, Jerome ;
Coropceanu, Veaceslav .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1691-1699
[5]   Recombination in polymer-fullerene bulk heterojunction solar cells [J].
Cowan, Sarah R. ;
Roy, Anshuman ;
Heeger, Alan J. .
PHYSICAL REVIEW B, 2010, 82 (24)
[6]   Polymer donor-polymer acceptor (all-polymer) solar cells [J].
Facchetti, Antonio .
MATERIALS TODAY, 2013, 16 (04) :123-132
[8]   Understanding the Reduced Efficiencies of Organic Solar Cells Employing Fullerene Multiadducts as Acceptors [J].
Faist, Mark A. ;
Shoaee, Safa ;
Tuladhar, Sachetan ;
Dibb, George F. A. ;
Foster, Samuel ;
Gong, Wei ;
Kirchartz, Thomas ;
Bradley, Donal D. C. ;
Durrant, James R. ;
Nelson, Jenny .
ADVANCED ENERGY MATERIALS, 2013, 3 (06) :744-752
[9]  
Green MA, 2014, NAT PHOTONICS, V8, P506, DOI [10.1038/nphoton.2014.134, 10.1038/NPHOTON.2014.134]
[10]   Conjugated polymer-based organic solar cells [J].
Guenes, Serap ;
Neugebauer, Helmut ;
Sariciftci, Niyazi Serdar .
CHEMICAL REVIEWS, 2007, 107 (04) :1324-1338