Parallel preconditioning with sparse approximate inverses

被引:418
作者
Grote, MJ [1 ]
Huckle, T [1 ]
机构
[1] UNIV WURZBURG,INST ANGEW MATH & STAT,D-97070 WURZBURG,GERMANY
关键词
preconditioning; approximate inverses; parallel algorithms; sparse matrices; sparse linear systems; iterative methods;
D O I
10.1137/S1064827594276552
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A parallel preconditioner is presented for the solution of general sparse linear systems of equations. A sparse approximate inverse is computed explicitly and then applied as a preconditioner to an iterative method. The computation of the preconditioner is inherently parallel, and its application only requires a matrix-vector product. The sparsity pattern of the approximate inverse is not imposed a priori but captured automatically. This keeps the amount of work and the number of nonzero entries in the preconditioner to a minimum. Rigorous bounds on the clustering of the eigenvalues and the singular values are derived for the preconditioned system, and the proximity of the approximate to the true inverse is estimated, An extensive set of test problems from scientific and industrial applications provides convincing evidence of the effectiveness of this approach.
引用
收藏
页码:838 / 853
页数:16
相关论文
共 19 条
[1]  
[Anonymous], 1965, NUMER MATH, DOI DOI 10.1007/BF01436075
[2]  
Axelsson O., 1994, ITERATIVE SOLUTION M
[3]  
Barrett R., 1994, SIAM, V43
[4]  
CHOW E, IN PRESS SIAM J SCI
[5]   APPROXIMATE INVERSE PRECONDITIONINGS FOR SPARSE LINEAR-SYSTEMS [J].
COSGROVE, JDF ;
DIAZ, JC ;
GRIEWANK, A .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1992, 44 (1-4) :91-110
[6]   DECAY-RATES FOR INVERSES OF BAND MATRICES [J].
DEMKO, S ;
MOSS, WF ;
SMITH, PW .
MATHEMATICS OF COMPUTATION, 1984, 43 (168) :491-499
[7]  
FREUND RW, 1993, NUMERICAL LINEAR ALGEBRA, P123
[8]  
FREUND RW, 1991, ACTA NUMER, P57
[9]  
Grote M., 1992, Proceedings. Scalable High Performance Computing Conference SHPCC-92 (Cat. No.92TH0432-5), P76, DOI 10.1109/SHPCC.1992.232685
[10]  
Kolotilina L. Yu., 1992, Iterative Methods in Linear Algebra. Proceedings of the IMACS International Symposium, P311