Molecular modeling of adsorptive energy storage: Hydrogen storage in single-walled carbon nanotubes

被引:85
作者
Gordon, PA [1 ]
Saeger, PB [1 ]
机构
[1] Mobil Technol Co, Strateg Res Ctr, Paulsboro, NJ 08066 USA
关键词
D O I
10.1021/ie990503h
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this paper, density functional theory is used to estimate hydrogen adsorption in a novel carbonaceous material, single-walled carbon nanotubes. An idealized adsorbent structure for the nanotubes is assumed. We have mapped out the regime of operating pressures and temperatures where an adsorption-based storage system is expected to deliver more hydrogen than a similar system of compressed gas. This regime is also a function of pore size. We have calculated the overall hydrogen volumetric and gravimetric density within the framework of a typical high-pressure gas storage system. Within the regime of operating conditions where adsorptive storage seems attractive, the storage properties of hydrogen in a carbon nanotube system appear to fall far short of the targets of 62 kg of H-2/m(3) and 6.5 wt % H-2 set by the Department of Energy. The computed gravimetric storage densities also fall short of those reported in the literature (Nature 1997, 386, 377). We discuss several possible mechanisms by which higher gravimetric density could be rationalized, including chemisorption, adsorption at interstitial sites, and swelling of the nanotube array.
引用
收藏
页码:4647 / 4655
页数:9
相关论文
共 36 条
[1]   OPENING CARBON NANOTUBES WITH OXYGEN AND IMPLICATIONS FOR FILLING [J].
AJAYAN, PM ;
EBBESEN, TW ;
ICHIHASHI, T ;
IIJIMA, S ;
TANIGAKI, K ;
HIURA, H .
NATURE, 1993, 362 (6420) :522-525
[2]   Purification of single-wall carbon nanotubes by microfiltration [J].
Bandow, S ;
Rao, AM ;
Williams, KA ;
Thess, A ;
Smalley, RE ;
Eklund, PC .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (44) :8839-8842
[3]  
Burnett DS., 1987, FINITE ELEM ANAL DES
[4]   EQUATION OF STATE FOR NONATTRACTING RIGID SPHERES [J].
CARNAHAN, NF ;
STARLING, KE .
JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (02) :635-&
[5]   INFLUENCE OF PORE GEOMETRY ON THE DESIGN OF MICROPOROUS MATERIALS FOR METHANE STORAGE [J].
CRACKNELL, RF ;
GORDON, P ;
GUBBINS, KE .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (02) :494-499
[6]  
Dillon A. C, 1996, P US DOE HYDROGEN PR, VII, P747
[7]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[8]   CAPILLARITY AND WETTING OF CARBON NANOTUBES [J].
DUJARDIN, E ;
EBBESEN, TW ;
HIURA, H ;
TANIGAKI, K .
SCIENCE, 1994, 265 (5180) :1850-1852
[9]   MOLECULAR SIMULATION STUDY OF THE SURFACE-BARRIER EFFECT - DILUTE GAS LIMIT [J].
FORD, DM ;
GLANDT, ED .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (29) :11543-11549
[10]  
GRIGORIAN L, 1998, UNPUB SCIENCE