On framing effects in decision making:: Linking lateral versus medial orbitofrontal cortex activation to choice outcome processing

被引:73
作者
Windmann, Sabine
Kirsch, Peter
Mier, Daniela
Stark, Rudolf
Walter, Bertram
Gunturkun, Onur
Vaitl, Dieter
机构
[1] Goethe Univ Frankfurt, Inst Psychol, D-60054 Frankfurt, Germany
[2] Ruhr Univ Bochum, D-4630 Bochum, Germany
[3] Univ Giessen, Giessen, Germany
关键词
D O I
10.1162/jocn.2006.18.7.1198
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Two correlates of outcome processing in the orbitofrontal cortex (OFC) have been proposed in the literature: One hypothesis suggests that the lateral/medial division relates to representation of outcome valence (negative vs. positive), and the other suggests that the medial OFC maintains steady stimulus-outcome associations, whereas the lateral OFC represents changing (unsteady) outcomes to prepare for response shifts. These two hypotheses were contrasted by comparing the original with the inverted version of the Iowa Gambling Task in an event-related functional magnetic resonance imaging experiment. Results showed (1) that (caudo) lateral OFC was indeed sensitive to the steadiness of the outcomes and not merely to outcome valence and (2) that the original and the inverted tasks, although both designed to measure sensitivity for future outcomes, were not equivalent as they enacted different behaviors and brain activation patterns. Results are interpreted in terms of Kahneman and Tversky's prospect theory suggesting that cognitions and decisions are biased differentially when probabilistic future rewards are weighed against consistent punishments relative to the opposite scenario [Kahneman, D., & Tversky, A. Choices values, and frames. American Psychologist, 39, 341-350, 1984]. Specialized processing of unsteady rewards (involving caudolateral OFC) may have developed during evolution in support of goal-related thinking, prospective planning, and problem solving.
引用
收藏
页码:1198 / 1211
页数:14
相关论文
共 96 条
[1]   Dissociated neural representations of intensity and valence in human olfaction [J].
Anderson, AK ;
Christoff, K ;
Stappen, I ;
Panitz, D ;
Ghahremani, DG ;
Glover, G ;
Gabrieli, JDE ;
Sobel, N .
NATURE NEUROSCIENCE, 2003, 6 (02) :196-202
[2]   Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans [J].
Aron, AR ;
Fletcher, PC ;
Bullmore, ET ;
Sahakian, BJ ;
Robbins, TW .
NATURE NEUROSCIENCE, 2003, 6 (02) :115-116
[3]   Inhibition and the right inferior frontal cortex [J].
Aron, AR ;
Robbins, TW ;
Poldrack, RA .
TRENDS IN COGNITIVE SCIENCES, 2004, 8 (04) :170-177
[4]  
Baxter MG, 2000, J NEUROSCI, V20, P4311
[5]   The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage [J].
Bechara, A .
BRAIN AND COGNITION, 2004, 55 (01) :30-40
[6]   Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions [J].
Bechara, A ;
Tranel, D ;
Damasio, H .
BRAIN, 2000, 123 :2189-2202
[7]   INSENSITIVITY TO FUTURE CONSEQUENCES FOLLOWING DAMAGE TO HUMAN PREFRONTAL CORTEX [J].
BECHARA, A ;
DAMASIO, AR ;
DAMASIO, H ;
ANDERSON, SW .
COGNITION, 1994, 50 (1-3) :7-15
[8]   Deciding advantageously before knowing the advantageous strategy [J].
Bechara, A ;
Damasio, H ;
Tranel, D ;
Damasio, AR .
SCIENCE, 1997, 275 (5304) :1293-1295
[9]   Predictability modulates human brain response to reward [J].
Berns, GS ;
McClure, SM ;
Pagnoni, G ;
Montague, PR .
JOURNAL OF NEUROSCIENCE, 2001, 21 (08) :2793-2798
[10]   Dissociable neural responses to facial expressions of sadness and anger [J].
Blair, RJR ;
Morris, JS ;
Frith, CD ;
Perrett, DI ;
Dolan, RJ .
BRAIN, 1999, 122 :883-893