Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations

被引:32
作者
Jakobsen, ER [1 ]
Karlsen, KH
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
[2] Univ Bergen, Dept Math, N-5008 Bergen, Norway
关键词
nonlinear degenerate parabolic equation; Hamilton-Jacobi-Bellman equation; viscosity solution; continuous dependence estimate; vanishing viscosity method; convergence rate; Holder estimate;
D O I
10.1006/jdeq.2001.4136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the maximum principle for semicontinuous functions (Differential Integral Equations 3 (1990), 1001-1014; Bull. Amer. Math. Soc. (N.S) 27 (1992), 1-67), we establish a general "continuous dependence on the nonlinearities" estimate for viscosity solutions of fully nonlinear degenerate parabolic equations with time- and space-dependent nonlinearities. Our result generalizes a result by Souganidis (J Differential Equations 56 (1985), 345-390) for first-order Hamilton-Jacobi equations and a recent result by Cockburn et al. (J Differential Equations 170 (2001), 180-187) for a class of degenerate parabolic second-order equations. We apply this result to a rather general class of equations and obtain: (i) Explicit continuous dependence estimates. (ii) L-infinity and Holder regularity estimates. (iii) A rate of convergence for the vanishing viscosity method. Finally, we illustrate results (i)-(iii) on the Hamilton-Jacobi-Bellman partial differential equation associated with optimal control of a degenerate diffusion process over a finite horizon. For this equation such results are usually derived via probabilistic arguments, which we avoid entirely here. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:497 / 525
页数:29
相关论文
共 9 条
[1]   Continuous dependence on the nonlinearity of viscosity solutions of parabolic equations [J].
Cockburn, B ;
Gripenberg, G ;
Londen, SO .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 170 (01) :180-187
[2]  
Crandall M. G., 1990, DIFFERENTIAL INTEGRA, V3, P1001
[3]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[4]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[5]  
FLEMING W. H., 2005, Stochastic Modelling and Applied Probability, V2nd
[6]   ON UNIQUENESS AND EXISTENCE OF VISCOSITY SOLUTIONS OF FULLY NONLINEAR 2ND-ORDER ELLIPTIC PDES [J].
ISHII, H .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (01) :15-45
[7]  
ISHII H, 1989, ANN SCUOLA NORM SU S, V16, P105
[8]  
Krylov N. V., 1980, Controlled Diffusion Processes, V14
[9]   EXISTENCE OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
SOUGANIDIS, PE .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 56 (03) :345-390