Global methods to monitor the thiol-disulfide state of proteins in vivo

被引:84
作者
Leichert, Lars I. [1 ]
Jakob, Ursula [1 ]
机构
[1] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1089/ars.2006.8.763
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cysteines play an important role in protein biochemistry. The unique chemical property and high reactivity of the free thiol group makes reduced cysteine a versatile component of catalytic centers and metal binding sites in many cytosolic proteins and oxidized cystine a stabilizing component in many secreted proteins. Moreover, cysteines readily react with reactive oxygen and nitrogen species to form reversible oxidative thiol modifications. As a result, these reversible thiol modifications have found a use as regulatory nano-switches in an increasing number of redox sensitive proteins. These redox-regulated proteins are able to adjust their activity quickly in response to changes in their redox environment. Over the past few years, a number of techniques have been developed that give insight into the global thiol-disulfide state of proteins in the cell. They have been successfully used to find substrates of thiol-disulfide oxidoreductases and to discover novel redox-regulated proteins. This review will provide an overview of the current techniques, focus on approaches to quantitatively describe the extent of thiol modification in vivo, and summarize their applications.
引用
收藏
页码:763 / 772
页数:10
相关论文
共 100 条
[1]   Oxidative stress during the chronic phase after stroke [J].
Alexandrova, ML ;
Bochev, PG .
FREE RADICAL BIOLOGY AND MEDICINE, 2005, 39 (03) :297-316
[2]  
ANDERSON ME, 1985, METHOD ENZYMOL, V113, P548
[3]  
Anderson Robert N, 2005, Natl Vital Stat Rep, V53, P1
[4]   Physiological functions of thioredoxin and thioredoxin reductase [J].
Arnér, ESJ ;
Holmgren, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (20) :6102-6109
[5]   Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol -: disulfide status [J].
Åslund, F ;
Zheng, M ;
Beckwith, J ;
Storz, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6161-6165
[6]   Oxidative protein folding is driven by the electron transport system [J].
Bader, M ;
Muse, W ;
Ballou, DP ;
Gassner, C ;
Bardwell, JCA .
CELL, 1999, 98 (02) :217-227
[7]   Proteomics gives insight into the regulatory function of chloroplast thioredoxins [J].
Balmer, Y ;
Koller, A ;
del Val, G ;
Manieri, W ;
Schürmann, P ;
Buchanan, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :370-375
[8]   Oxidative stress-induced ischemic heart disease: Protection by antioxidants [J].
Bandyopadhyay, D ;
Chattopadhyay, A ;
Ghosh, G ;
Datta, AG .
CURRENT MEDICINAL CHEMISTRY, 2004, 11 (03) :369-387
[9]   IDENTIFICATION OF A PROTEIN REQUIRED FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
MCGOVERN, K ;
BECKWITH, J .
CELL, 1991, 67 (03) :581-589
[10]   BUILDING BRIDGES - DISULFIDE BOND FORMATION IN THE CELL [J].
BARDWELL, JCA .
MOLECULAR MICROBIOLOGY, 1994, 14 (02) :199-205