MDL principle for robust vector quantisation

被引:57
作者
Bischof, H [1 ]
Leonardis, A
Selb, A
机构
[1] Vienna Univ Technol, Pattern Recognit & Image Proc Grp, A-1040 Vienna, Austria
[2] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana, Slovenia
关键词
clustering; colour-image segmentation; image coding; minimum description length; robustness; vector quantisation;
D O I
10.1007/s100440050015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of finding the optimal number of reference vectors for vector quantisation from the point of view of the Minimum Description Length (MDL) principle. We formulate vector quantisation in terms of the MDL principle, and then derive different instantiations of the algorithm, depending on the coding procedure. Moreover, we develop an efficient algorithm (similar to EM-type algorithms) for optimising the MDL criterion. In addition, we use the MDL principle to increase the robustness of the training algorithm, namely, the MDL principle provides a criterion to decide which data points are outliers. We illustrate our approach on 2D clustering problems (in order to visualise the behaviour of the algorithm), and present applications on image coding. Finally, we outline various ways to extend the algorithm.
引用
收藏
页码:59 / 72
页数:14
相关论文
共 23 条
[1]   VECTOR QUANTIZATION WITH COMPLEXITY COSTS [J].
BUHMANN, J ;
KUHNEL, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (04) :1133-1145
[2]  
COMANICIU D, 1998, LECT NOTES COMPUTER, V1451, P602
[3]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[4]  
Duda R.O., 1973, Pattern classification
[5]  
FRITZKE B, 1995, ADV NEURAL INFORMATI, V7
[6]  
Fritzke B., 1997, Some Competitive Learning Methods
[7]  
Gersho A., 1992, Vector quantization and signal compression
[8]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[9]  
Hinton G.E., 1994, Advances in neural information processing systems, P3
[10]  
Huber P.J., 1981, ROBUST STAT