Cofilin promotes rapid actin filament turnover in vivo

被引:381
作者
Lappalainen, P [1 ]
Drubin, DG [1 ]
机构
[1] UNIV CALIF BERKELEY, DEPT MOL & CELL BIOL, BERKELEY, CA 94720 USA
关键词
D O I
10.1038/40418
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability of actin filaments to function in cell morphogenesis and motility is coupled to their capacity for rapid assembly and disassembly. Because disassembly in vitro is much slower than in vivo, cellular factors that stimulate disassembly have long been assumed to exist. Although numerous proteins can affect actin dynamics in vitro, demonstration of in vivo relevance of these effects has not been achieved. We have used genetics and an actin-inhibitor in yeast to demonstrate that rapid cycles of actin assembly and disassembly depend on the small actin-binding protein cofilin, and that cofilin stimulates filament disassembly. These results may explain why cofilin is ubiquitous in eukaryotes and is essential for viability in every organism in which its function has been tested genetically. Magnitudes of disassembly defects in cofilin mutants in vivo were found to be correlated closely with the magnitudes of disassembly defects observed in vitro, supporting our conclusions. Furthermore, these cofilin mutants provided an opportunity to distinguish in living cells those actin functions that depend specifically on filament turnover (endocytosis) from those that do not (cortical actin patch motility).
引用
收藏
页码:78 / 82
页数:5
相关论文
共 30 条
[1]   Xenopus laevis actin-depolymerizing factor cofilin: A phosphorylation-regulated protein essential for development [J].
Abe, H ;
Obinata, T ;
Minamide, LS ;
Bamburg, JR .
JOURNAL OF CELL BIOLOGY, 1996, 132 (05) :871-885
[2]   REQUIREMENT OF YEAST FIMBRIN FOR ACTIN ORGANIZATION AND MORPHOGENESIS INVIVO [J].
ADAMS, AEM ;
BOTSTEIN, D ;
DRUBIN, DG .
NATURE, 1991, 354 (6352) :404-408
[3]   REACTIVATION OF PHOSPHORYLATED ACTIN DEPOLYMERIZING FACTOR AND IDENTIFICATION OF THE REGULATORY SITE [J].
AGNEW, BJ ;
MINAMIDE, LS ;
BAMBURG, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (29) :17582-17587
[4]  
Ausubel F., 1990, CURRENT PROTOCOLS MO
[5]   High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A [J].
Ayscough, KR ;
Stryker, J ;
Pokala, N ;
Sanders, M ;
Crews, P ;
Drubin, DG .
JOURNAL OF CELL BIOLOGY, 1997, 137 (02) :399-416
[6]   PARTIAL-PURIFICATION AND CHARACTERIZATION OF AN ACTIN DEPOLYMERIZING FACTOR FROM BRAIN [J].
BAMBURG, JR ;
HARRIS, HE ;
WEEDS, AG .
FEBS LETTERS, 1980, 121 (01) :178-182
[7]   THE END3 GENE ENCODES A PROTEIN THAT IS REQUIRED FOR THE INTERNALIZATION STEP OF ENDOCYTOSIS AND FOR ACTIN CYTOSKELETON ORGANIZATION IN YEAST [J].
BENEDETTI, H ;
RATHS, S ;
CRAUSAZ, F ;
RIEZMAN, H .
MOLECULAR BIOLOGY OF THE CELL, 1994, 5 (09) :1023-1037
[8]   Yeast actin: Polymerization kinetic studies of wild type and a poorly polymerizing mutant [J].
Buzan, JM ;
Frieden, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (01) :91-95
[9]   Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: Implication in actin-based motility [J].
Carlier, MF ;
Laurent, V ;
Santolini, J ;
Melki, R ;
Didry, D ;
Xia, GX ;
Hong, Y ;
Chua, NH ;
Pantaloni, D .
JOURNAL OF CELL BIOLOGY, 1997, 136 (06) :1307-1322
[10]   INHIBITION OF ACTIN POLYMERIZATION BY LATRUNCULIN-A [J].
COUE, M ;
BRENNER, SL ;
SPECTOR, I ;
KORN, ED .
FEBS LETTERS, 1987, 213 (02) :316-318