Molecular simulation study of some thermophysical and transport properties of triazolium-based ionic liquids

被引:150
作者
Cadena, Cesar [1 ]
Maginn, Edward J. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
关键词
D O I
10.1021/jp0629036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Results of a molecular dynamics study of several triazolium-based ionic liquids are reported. Triazolium cations include 1,2,4-triazolium, 1,2,3-triazolium, 4-amino-1,2,4-triazolium, and 1-methyl-4-amino-1,2,4-triazolium. Each cation was paired with a nitrate or perchlorate anion. These materials are part of a class of ionic compounds that have been synthesized recently but for which little physical property data are available. Properties of the more common ionic liquid, 1-n-butyl-3-methylimidazolium nitrate, are also computed and compared with the properties of the triazolium-based compounds. A molecular mechanics force field was developed for these materials using a mix of ab initio calculations and parameter fitting using the molecular compound 1H-1,2,4-triazole as a basis for the triazolium cations. Liquid-phase properties that were computed include heat capacities, cohesive energy densities, gravimetric densities/molar volumes as a function of temperature and pressure, self-diffusivities, rotational time constants, and various pair correlation functions. In the solid phase, heat capacities and lattice parameters were computed. Of all of these properties, only lattice parameters have been measured experimentally (and only for four of the triazolium compounds). The agreement with the experimental crystal structures was good. When compared with that of the imidazolium-based ionic liquid, the triazolium-based materials have much smaller molar volumes, higher cohesive energy densities, and larger specific heat capacities. They also tend to be less compressible, have a higher gravimetric density, and have faster rotational dynamics but similar translational dynamics.
引用
收藏
页码:18026 / 18039
页数:14
相关论文
共 40 条
[1]   Simulations of the solid, liquid, and melting of 1-n-butyl-4-amino-1,2,4-triazolium bromide [J].
Alavi, S ;
Thompson, DL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (38) :18127-18134
[2]  
Allen M. P., 2009, Computer Simulation of Liquids
[3]   MICROWAVE-SPECTRUM AND STRUCTURE OF 1,2,4-TRIAZOLE [J].
BOLTON, K ;
BROWN, RD ;
BURDEN, FR ;
MISHRA, A .
JOURNAL OF MOLECULAR STRUCTURE, 1975, 27 (02) :261-266
[4]   MICROWAVE SPECTRUM AND DIPOLE MOMENT OF 1,2,4-TRIAZOLE - IDENTIFICATION OF TAUTOMER IN VAPOUR PHASE [J].
BOLTON, K ;
BROWN, RD ;
BURDEN, FR ;
MISHRA, A .
JOURNAL OF THE CHEMICAL SOCIETY D-CHEMICAL COMMUNICATIONS, 1971, (15) :873-&
[5]   DETERMINING ATOM-CENTERED MONOPOLES FROM MOLECULAR ELECTROSTATIC POTENTIALS - THE NEED FOR HIGH SAMPLING DENSITY IN FORMAMIDE CONFORMATIONAL-ANALYSIS [J].
BRENEMAN, CM ;
WIBERG, KB .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (03) :361-373
[6]   Molecular modeling and experimental studies of the thermodynamic and transport properties of pyridinium-based ionic liquids [J].
Cadena, C ;
Zhao, Q ;
Snurr, RQ ;
Maginn, EJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (06) :2821-2832
[7]   Why is CO2 so soluble in imidazolium-based ionic liquids? [J].
Cadena, C ;
Anthony, JL ;
Shah, JK ;
Morrow, TI ;
Brennecke, JF ;
Maginn, EJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (16) :5300-5308
[8]   MOLECULAR-STRUCTURE OF 1,2,4-TRIAZOLE [J].
CHIANG, JF ;
LU, KC .
JOURNAL OF MOLECULAR STRUCTURE, 1977, 41 (02) :223-229
[9]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[10]   Computational study of room temperature molten salts composed by 1-alkyl-3-methylimidazolium cations-force-field proposal and validation [J].
de Andrade, J ;
Böes, ES ;
Stassen, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (51) :13344-13351