Ceramide, membrane rafts and infections

被引:142
作者
Gulbins, E [1 ]
Dreschers, S [1 ]
Wilker, B [1 ]
Grassmé, H [1 ]
机构
[1] Univ Duisburg Essen, Dept Mol Biol, D-45122 Essen, Germany
来源
JOURNAL OF MOLECULAR MEDICINE-JMM | 2004年 / 82卷 / 06期
关键词
ceramide; acid sphingomyelinase; bacteria; viruses; rafts; membrane platforms;
D O I
10.1007/s00109-004-0539-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Distinct domains in the cell membrane, termed rafts, emerge as central for the infection of mammalian cells by many pathogens. Rafts consist of sphingolipids and cholesterol that interact strongly, and thus spontaneously separate from other phospholipids in the cell membrane. Recent studies suggest that at least some pathogens activate the acid sphingomyelinase that releases ceramide in membrane rafts. The generation of ceramide transforms small rafts into a signaling unit and results in the fusion of small rafts to large platforms. Membrane rafts and ceramide-enriched membrane platforms have been shown to mediate internalization of bacteria, viruses and parasites into the host cell, to initiate apoptosis of the host cell upon infection and to regulate the release of cytokines from infected mammalian cells. Furthermore, rafts and ceramide have been implicated in the intracellular trafficking of phagosomes and in the budding of viruses from infected cells. The molecular function of rafts and ceramide-enriched membrane platforms seems to be the re-organization of receptor and intracellular signaling molecules in the cell membrane permitting the interaction of the pathogen with the cell. This suggests that rafts and ceramide-enriched membrane platforms function as central structures involved in the infection of mammalian cells by pathogens and as targets for the development of anti-infective drugs.
引用
收藏
页码:357 / 363
页数:7
相关论文
共 42 条
[1]   Cell biology - A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains [J].
Anderson, RGW ;
Jacobson, K .
SCIENCE, 2002, 296 (5574) :1821-1825
[2]   Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria [J].
Anes, E ;
Kühnel, MP ;
Bos, E ;
Moniz-Pereira, J ;
Habermann, A ;
Griffiths, G .
NATURE CELL BIOLOGY, 2003, 5 (09) :793-802
[3]   Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic [J].
Baorto, DM ;
Gao, ZM ;
Malaviya, R ;
Dustin, ML ;
vanderMerwe, A ;
Lublin, DM ;
Abraham, SN .
NATURE, 1997, 389 (6651) :636-639
[4]   Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrPSc) into contiguous membranes [J].
Baron, GS ;
Wehrly, K ;
Dorward, DW ;
Chesebro, B ;
Caughey, B .
EMBO JOURNAL, 2002, 21 (05) :1031-1040
[5]   Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering [J].
Bini, L ;
Pacini, S ;
Liberatori, S ;
Valensin, S ;
Pellegrini, M ;
Raggiaschi, R ;
Pallini, V ;
Baldari, CT .
BIOCHEMICAL JOURNAL, 2003, 369 :301-309
[6]   The transmembranous domain of CD40 determines CD40 partitioning into lipid rafts [J].
Bock, J ;
Gulbins, E .
FEBS LETTERS, 2003, 534 (1-3) :169-174
[7]   Structure and origin of ordered lipid domains in biological membranes [J].
Brown, DA ;
London, E .
JOURNAL OF MEMBRANE BIOLOGY, 1998, 164 (02) :103-114
[8]   Pseudomonas aeruginosa-induced apoptosis is defective in respiratory epithelial cells expressing mutant cystic fibrosis transmembrane conductance regulator [J].
Cannon, CL ;
Kowalski, MP ;
Stopak, KS ;
Pier, GB .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2003, 29 (02) :188-197
[9]   Ceramide enables Fas to cap and kill [J].
Cremesti, A ;
Paris, F ;
Grassmé, H ;
Holler, N ;
Tschopp, J ;
Fuks, Z ;
Gulbins, E ;
Kolesnick, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :23954-23961
[10]   Lipid rafts reconstituted in model membranes [J].
Dietrich, C ;
Bagatolli, LA ;
Volovyk, ZN ;
Thompson, NL ;
Levi, M ;
Jacobson, K ;
Gratton, E .
BIOPHYSICAL JOURNAL, 2001, 80 (03) :1417-1428