Image processing through multiscale analysis and measurement noise modeling

被引:26
作者
Murtagh, F
Starck, JL
机构
[1] Queens Univ Belfast, Sch Comp Sci, Belfast BT7 1NN, Antrim, North Ireland
[2] CEA Saclay, SEI, SAP, DAPNIA, F-91191 Gif Sur Yvette, France
关键词
wavelet transform; multiresolution analysis; filtering; deconvolution;
D O I
10.1023/A:1008938224840
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe a range of powerful multiscale analysis methods. We also focus on the pivotal issue of measurement noise in the physical sciences. From multiscale analysis and noise modeling, we develop a comprehensive methodology for data analysis of 2D images, 1D signals (or spectra), and point pattern data. Noise modeling is based on the following: (i) multiscale transforms, including wavelet transforms; (ii) a data structure termed the multiresolution support; and (iii) multiple scale significance testing. The latter two aspects serve to characterize signal with respect to noise. The data analysis objectives we deal with include noise filtering and scale decomposition for visualization or feature detection.
引用
收藏
页码:95 / 103
页数:9
相关论文
共 35 条
[1]  
[Anonymous], 1994, TRAIT SIGNAL
[2]   THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA [J].
ANSCOMBE, FJ .
BIOMETRIKA, 1948, 35 (3-4) :246-254
[3]  
BRUCE A, 1994, SPLUSWAVELETS USERS
[4]  
BURY P, 1995, DISTRIBUTION MATIERE
[5]  
COMBES JM, 1989, WAVELETS TEIME FREQU
[6]  
DASGUPTA A, 1995, 295 U WASH DEP STAT
[7]  
Daubechies I., 1992, MATH GAZ, V79, P19, DOI [10.2307/3620105, DOI 10.2307/3620105]
[8]  
DONOHO DL, 1995, J ROY STAT SOC B MET, V57, P301
[9]  
Holschneider M., 1990, Wavelets, P286
[10]  
KOLACZYK ED, 1997, UNPUB J ROYAL STAT B