Opposite smad and chicken ovalbumin upstream promoter transcription factor inputs in the regulation of the collagen VII gene promoter by transforming growth factor-β

被引:16
作者
Calonge, MJ
Seoane, J
Massagué, J
机构
[1] Mem Sloan Kettering Canc Ctr, Cell Biol Program, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Howard Hughes Med Inst, New York, NY 10021 USA
关键词
D O I
10.1074/jbc.M402178200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A critical component of the epidermal basement membrane, collagen type VII, is produced by keratinocytes and fibroblasts, and its production is stimulated by the cytokine transforming growth factor-beta (TGF-beta). The gene, COL7A1, is activated by TGF-beta via Smad transcription factors in cooperation with AP1. Here we report a previously unsuspected level of complexity in this regulatory process. We provide evidence that TGF-beta may activate the COL7A1 promoter by two distinct inputs operating through a common region of the promoter. One input is provided by TGF-beta-induced Smad complexes via two Smad binding elements that function redundantly depending on the cell type. The second input is provided by relieving the COL7A1 promoter from chicken ovalbumin upstream promoter transcription factor (COUP-TF)-mediated transcriptional repression. We identified COUP-TFI and - TFII as factors that bind to the TGF-beta-responsive region of the COL7A1 promoter in an expression library screening. COUP-TFs bind to a site between the two Smad binding elements independently of Smad or AP1 and repress the basal and TGF-beta-stimulated activities of this promoter. We provide evidence that endogenous COUP-TF activity represses the COL7A1 promoter. Furthermore, we show that TGF-beta addition causes a rapid and profound down-regulation of COUP-TF expression in keratinocytes and fibroblasts. The results suggest that TGF-beta signaling may exert tight control over COL7A1 by offsetting the balance between opposing Smad and COUP-TFs.
引用
收藏
页码:23759 / 23765
页数:7
相关论文
共 51 条
[1]   Functional domains of the human orphan receptor ARP-1/COUP-TFII involved in active repression and transrepression [J].
Achatz, G ;
Holzl, B ;
Speckmayer, R ;
Hauser, C ;
Sandhofer, F ;
Paulweber, B .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (09) :4914-4932
[2]   Isolation of a novel family of C2H2 zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors [J].
Avram, D ;
Fields, A ;
Top, KPO ;
Nevrivy, DJ ;
Ishmael, JE ;
Leid, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (14) :10315-10322
[3]   Smad4/DPC4 silencing and hyperactive Ras jointly disrupt transforming growth factor-β antiproliferative responses in colon cancer cells [J].
Calonge, MJ ;
Massagué, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (47) :33637-33643
[4]   E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression [J].
Chen, CR ;
Kang, YB ;
Siegel, PM ;
Massagué, J .
CELL, 2002, 110 (01) :19-32
[5]   A transcriptional partner for MAD proteins in TGF-beta signalling [J].
Chen, X ;
Rubock, MJ ;
Whitman, M .
NATURE, 1996, 383 (6602) :691-696
[6]  
CHRISTIANO AM, 1994, J BIOL CHEM, V269, P20256
[7]   An AP-1 binding sequence is essential for regulation of the human alpha 2(I) collagen (COL1A2) promoter activity by transforming growth factor-beta [J].
Chung, KY ;
Agarwal, A ;
Uitto, J ;
Mauviel, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (06) :3272-3278
[8]   Physiological function of the orphans GCNF and COUP-TF [J].
Cooney, AJ ;
Lee, CT ;
Lin, SC ;
Tsai, SY ;
Tsai, MJ .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2001, 12 (06) :247-251
[9]   CHICKEN OVALBUMIN UPSTREAM PROMOTER TRANSCRIPTION FACTOR (COUP-TF) DIMERS BIND TO DIFFERENT GGTCA RESPONSE ELEMENTS, ALLOWING COUP-TF TO REPRESS HORMONAL INDUCTION OF THE VITAMIN-D(3), THYROID-HORMONE, AND RETINOIC ACID RECEPTORS [J].
COONEY, AJ ;
TSAI, SY ;
OMALLEY, BW ;
TSAI, MJ .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (09) :4153-4163
[10]   Transforming growth factor β-inducible independent binding of SMAD to the Smad7 promoter [J].
Denissova, NG ;
Pouponnot, C ;
Long, JY ;
He, DM ;
Liu, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6397-6402